
www.forgetit-project.eu

ForgetIT
Concise Preservation by Combining Managed Forgetting

and Contextualized Remembering

Grant Agreement No. 600826

Deliverable D8.4

Work-package WP8: The Preserve-or-Forget Reference
Model and Framework

Deliverable D8.4: The Preserve-or-Forget Framework –
Second Release

Deliverable Leader Francesco Gallo (EURIX)
Quality Assessor Johannes Goslar (dkd)
Dissemination level PU
Delivery date in Annex I M27
Actual delivery date 30 July 2015 (M30)
Revisions 13
Status Final
Keywords PoF Framework, second prototype, inte-

grated components

ForgetIT Deliverable 8.4

Disclaimer

This document contains material, which is under copyright of individual or several ForgetIT
consortium parties, and no copying or distributing, in any form or by any means, is allowed
without the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consor-
tium warrant that the information contained in this document is suitable for use, nor that
the use of the information is free from risk, and accepts no liability for loss or damage
suffered by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for
any use that may be made of the information contained herein.

c© 2015 Participants in the ForgetIT Project

Page 2 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Revision History

Date Version Major changes Authors
14-01-2015 0.01 Document skeleton EURIX
20-01-2015 0.02 Updated document structure, prelimi-

nary introduction, PoF architecture
EURIX

29-01-2015 0.03 Added PoF Reference Model, sub-
sections for each middleware compo-
nent, appendix for scenarios

EURIX

24-02-2015 0.04 Described middleware implementa-
tion, REST APIs and CMIS, Preser-
vation System, updated architecture

IBM, EURIX

13-03-2015 0.05 Described preservation preparation
and re-activation workflows, Digital
Repository, updated appendix

EURIX, LUH,
USFD, DFKI, IBM

26-03-2015 0.06 Updated architecture, reference
model, middleware REST APIs, com-
pleted scenarios for second release,
preliminary sections about Semantic
Desktop and TYPO3

EURIX, DFKI, dkd,
LUH

11-05-2015 0.07 Added ID Manager, Scheduler, Ex-
tractor, Collector/Archiver

LTU, CERTH,
LUH, EURIX

19-05-2015 0.08 Added Condensator and Contextual-
izer, updated previous components,
Introduction, preliminary executive
summary

CERTH, USFD,
EURIX

28-05-2015 0.09 Completed middleware components,
added prototype implementation

LTU, USFD, EU-
RIX

19-06-2015 0.10 Reviewed all sections, added soft-
ware development, appendix for For-
gettor APIs, added glossary

EURIX, LUH,
DFKI, dkd

27-06-2015 0.11 Completed all sections, updated ref-
erences, first draft version circulated
for comments

EURIX

10-07-2015 0.12 Implemented comments from all part-
ners, updated version for internal QA

EURIX, dkd

30-07-2015 0.13 Implemented comments from internal
QA, final version

EURIX, dkd

c© ForgetIT Page 3 (of 93)

ForgetIT Deliverable 8.4

List of Authors

Partner Acronym Authors

LUH Andrea Ceroni, Tuan Tran
IBM Doron Chen
LTU Ingemar Andersson
USFD Mark A. Greenwood
DFKI Heiko Maus, Andreas Lauer, Sven Schwarz
CERTH Vassilis Solachidis, Olga Papadopoulou, Evlampios Apos-

tolidis, Alexandros Pournaras, Vasileios Mezaris
dkd Johannes Goslar
EURIX Francesco Gallo

Page 4 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Table of Contents

Executive Summary 7

1 Introduction 8

2 PoF Framework Architecture 11

3 PoF Reference Model 13

4 PoF Middleware 17

4.1 PoF Enterprise Service Bus . 17

4.1.1 Message-Oriented Middleware . 17

4.1.2 Enterprise Integration Patterns . 19

4.1.3 Asynchronous Routing Engine . 20

4.1.4 PoF ESB Implementation . 21

4.2 Middleware Configuration . 22

4.3 RESTful Service . 23

4.4 CMIS Integration . 24

4.5 Implementation of Reference Model Workflows 26

4.5.1 Preservation Preparation Workflow 26

4.5.2 Re-activation Workflow . 31

5 PoF Middleware Integrated Components 33

5.1 ID Manager . 33

5.2 Metadata Repository . 35

5.3 Scheduler . 38

5.4 Extractor . 39

5.5 Condensator . 43

5.6 Collector/Archiver . 44

5.7 Forgettor . 46

c© ForgetIT Page 5 (of 93)

ForgetIT Deliverable 8.4

5.8 Contextualizer . 50

5.9 Navigator . 51

5.10 Context-aware Preservation Manager . 52

6 Active Systems 54

6.1 Semantic Desktop . 54

6.2 TYPO3 . 56

6.3 CMIS-based User Applications . 58

7 Preservation System 59

7.1 Digital Repository . 59

7.2 Preservation-aware Storage System . 61

8 PoF Framework: Second Prototype Implementation 63

9 Conclusions 69

9.1 Summary . 69

9.2 Assessment of Performance Indicators . 69

9.2.1 Evaluation of the PoF Framework . 71

9.3 Next Steps . 71

10 References 73

Glossary 76

A Middleware Configuration and Administration 77

B Scenarios for the Second Prototype Demonstrations 86

B.1 Scenario 1: Incremental Photo Preservation 86

B.2 Scenario 2: Automated Contextualization and Re-contextualization 88

B.3 Scenario 3: Automated Generation of Multimedia Diary 90

C Experimental APIs of the Memory Buoyancy Assessor 92

Page 6 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Executive Summary

This document describes the Preserve-or-Forget (PoF) Framework, discussing the imple-
mentation of the prototype and the integrated components. In this deliverable we present
the second release of the framework, developed during the second year of project and
based on the first release, described in deliverable D8.3. The second prototype has been
presented at the second annual project review. The final release of the framework is
expected at the end of the project and will be described in deliverable D8.5.

The framework prototype is based on the architecture and integration plan defined in D8.1,
integrates the components developed in the technical WPs and provides a foundation for
application pilot development in WP9 and WP10. The PoF Framework is made up of the
Active Systems (information management systems), the PoF Middleware (implementing
core ForgetIT principles) and the Preservation System.

The reference workflows defined in the initial version of the PoF Reference Model de-
scribed in D8.2 have been used for the development of the framework. Currently two
workflows have been implemented, for preservation preparation and re-activation. The
other workflows for the evolutionary part of the model will be implemented by the final
framework release.

The PoF Middleware REST APIs, defined in D8.1, have been updated with respect to the
first release. For data exchange between the Active Systems and the PoF Middleware
we leverage the OASIS CMIS standard. The PoF Middleware has been implemented
as a Message Oriented Middleware (MOM) and on top of the messaging layer for the
second release we added a rule-based routing engine for workflow management. The
implementation based on Apache ActiveMQ and Apache Camel is described. Further
improvements to the workflow management are also outlined, for example those related
to the use of Enterprise Integration Patterns (EIP) or to the integration of additional ESB
components on top of the existing solution. For the middleware components identified
in D8.1, either providing common tasks or implementing core ForgetIT functionality, we
provide information about the status and the workplan for the third release.

Concerning the Preservation System, we describe the two main components, the Digital
Repository and the Preservation-aware Storage System, based on cloud technologies.
Both systems implement the archive functionality for the preservation of ForgetIT content.
The APIs exposed by the Preservation System are discussed and the implementation
using DSpace and Openstack Swift is described. We also describe how Storlets are
involved in the current workflow.

Finally we provide additional information about the software development process and the
collaborative tools, as well as preliminary considerations about the license for the core
components of the PoF Framework. The software documentation for the PoF Middleware
and the Preservation System APIs are available on the project web site.

c© ForgetIT Page 7 (of 93)

ForgetIT Deliverable 8.4

1 Introduction

The main topic of this document is the description of the second prototype implementation
of the Preserve-or-Forget (PoF) Framework, which integrates the results achieved during
the first two years and is based on the first release of the PoF Reference Model reported
in deliverable D8.2 [ForgetIT, 2015g]. This deliverable consists of the description of the
prototype which is running in the ForgetIT testbed environment hosted by EURIX (see
Section 6 in deliverable D8.1 [ForgetIT, 2013d]).

The PoF Framework provides an integration framework for all available components and
is based on the ForgetIT architecture described in deliverable D8.1, where an overview
of the architecture layers and the main components are included. The framework is used
to validate the basic workflows for the three core ForgetIT principles: managed forgetting,
contextualized remembering and synergetic preservation. More specifically, the second
prototype implements the relevant workflows of the functional part of the model.

The first release of the PoF Framework, described in deliverable D8.3 [ForgetIT, 2014e],
was based on the components developed within the project during the first year. The
second prototype was built on top of the first integrated components, keeping the original
approach based on open and widely adopted technologies, with several improvements in
term of flexibility and number of integrated components.

The development of the second framework is the joint effort of all project partners, per-
formed in a collaborative way, sharing a code repository and tracking open issues to be
discussed in periodic meetings by all interested partners.

The implementation of the second prototype leverages the outcomes of the other technical
WPs: the analysis of workflow models for synergetic preservation, reported in deliverables
D5.2 and D5.3; the definition of information packages created in the PoF Middleware and
imported in the Preservation System, based on the results provided by WP5; the compo-
nents developed by technical WPs and integrated in the prototype, described in detail in
the last version of the corresponding deliverables, namely D3.3, D4.3, D5.3 and D6.3 for
the PoF Middleware components, D7.3 for the Preservation-aware Storage System, D8.3
for the Digital Repository and finally D9.3 and D10.2 for the Active Systems. Moreover,
the outcomes of WP2 (see for example deliverables D2.2 and D2.3) contributed to the
definition of the PoF Reference Model which inspired the current implementation, while
the issues related to framework licensing and possible mechanisms to publish and dis-
seminate ForgetIT software as open source were analyzed in collaboration with WP11.
All the aforementioned deliverables are available on the project web site and are reported
in the References.

The component description in this document focuses only on those aspects relevant for
integration, such as APIs and I/O formats and protocols, while for component implemen-
tation details please refer to the relevant deliverables from the corresponding WPs.

In addition to the end-to-end preservation workflow, which was updated and improved
with respect to the first release, for the implementation of the second release three ref-

Page 8 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

erence scenarios were identified: Incremental Photo Preservation, Automated Contextu-
alization and Re-contextualization and Automated Generation of Multimedia Diary. We
briefly describe such scenarios in Appendix B, pointing to other deliverables for further
implementation details whenever available.

The document is organized as in the following: a summary of the relevant information
concerning the PoF Framework architecture is reported in Section 2; an overview of the
PoF Reference Model and the relevant workflows implemented in the second prototype
is described in Section 3; the implementation of the three main framework layers and
their integration is discussed in dedicated Sections, for the PoF Middleware (Section 4
and Section 5), the Active Systems (Section 6) and the Preservation System (Section 7),
respectively; in these Sections we also describe the internal components, the progress
with respect to the first prototype and the workplan for the final release; the prototype im-
plementation, including a short description of the software development, documentation
and licensing, is reported in Section 8; in Section 9 we describe the future activities to-
wards the final framework release and provide an assessment of the results against WP8
success indicators, which have been defined in the project proposal; Appendix A provides
implementation details for the configuration of the PoF Middleware; Appendix B describes
the three representative scenarios mentioned above, used to demonstrate the second
framework: in this Section we also include application screenshots from the demonstra-
tions which were shown at the second project review; finally, Appendix C provides infor-
mation about the experimental APIs for the Memory Buoyancy (MB) assessor.

Progress after first prototype

The second prototype includes several improvements with respect to the first release:

• the messaging layer infrastructure and the routing engine have been further devel-
oped, providing more flexibility and support for the integration of middleware com-
ponents and the definition of relevant workflows; a web console for managing the
messaging infrastructure, monitoring the workflows and the queues, has been im-
plemented;

• the middleware software has been improved and makes use of configuration files for
the workflow definitions, dynamic creation of component instances and configuration
of the parameters to access remote services; the coupling between the components
and the dependency on implementation details have been reduced;

• the PoF Middleware REST APIs have been updated and now provide a more stable
integration mechanism; additional features of the CMIS standard [OASIS, 2013] are
now used: additional descriptive and technical metadata about the content to be
preserved is now retrieved by the PoF Framework and archived in the Preservation
System;

• the updated versions of the middleware components have been integrated, while
new components not available in the first release have been added: examples of

c© ForgetIT Page 9 (of 93)

ForgetIT Deliverable 8.4

such new components include the Condensator and the Navigator;

• the Preservation System has been updated, mainly for what concerns the cloud
storage part; an updated version of the Digital Repository is used and the integration
mechanism to preserve and re-activate content as been improved, as described in
the following; a new implementation of the cloud storage components with additional
Storlets is available: content metadata enrichment executed upon ingest has been
implemented, metadata search for content stored in the cloud can be used;

• both Active Systems have been updated and the integration with the PoF Middle-
ware has been improved; based on CMIS representation , the support for Semantic
Desktop collections has been added to the preservation workflow; the Preservation
Value (PV) for the resources in the Active Systems is fetched using CMIS and is
used to take decisions about content to be retrieved by PoF Middleware and pre-
served: this is an initial step towards managed forgetting, to be further investigated
for the third release implementation;

The results described above represent a good progress towards WP8 objectives: in a
nutshell, the PoF Framework has been developed during the second year following the
first version of the PoF Reference Model, which is now available, and better implements
the core principles of the project, integrating the new results of the project. Further de-
tails are provided in Section 9, where we discuss the progress compared to the success
indicators.

Target audience for this deliverable

This deliverable targets a technically oriented readership, which is interested in the tech-
nical aspects of the implementation of the PoF Framework, plans to adopt the framework
or wants to use it as a blueprint for a similar project.

Page 10 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

2 PoF Framework Architecture

The architecture of the PoF Framework, described in deliverable D8.1 [ForgetIT, 2013d],
is made up of three layers: Active Systems, Preserve-or-Forget (PoF) Middleware and
Preservation System. The last version of the UML component diagram for the overall
architecture is depicted in Figure 1.

The Active Systems represent user applications or any information management system.
The Preservation System, which implements the PoF Framework archive, is composed by
two sub-systems: a Digital Repository and a Preservation-aware Storage, which includes
a Cloud Storage Service. The Preservation System provides both content management
and typical archive features required for the synergetic preservation. The PoF Middleware
is intended to enable seamless transition from Active Systems to the Preservation System
(and vice versa) for the synergetic preservation, and to provide the necessary functional-
ity supporting managed forgetting and contextualized remembering. The PoF Middleware
provides the communication layer for all components developed in WP3-WP6, implement-
ing the concept of Enterprise Service Bus (ESB) using a Message Oriented Middleware
(MOM) (see Section 4). The middleware connects the user applications with the archive
and provides the infrastructure to fetch content from the applications. Finally, the middle-
ware manages the preservation preparation and re-activation workflows interacting with
the Active System and the Preservation System.

Compared to previous versions, the updated component diagram in Figure 1 has been
improved, mainly for what concerns the Preservation System composite structure, where
the internal components have been reviewed according to the recent developments in
WP7 and WP8. Additional details have been added for the PoF Middleware components:
for example the Policy Engine developed by WP3 has been added as part of the Forgettor
component. No other major changes have been applied to the PoF architecture compared
to the version used for the first release framework.

The ForgetIT framework leverages the adoption of standard lightweight technologies for
data exchange and communication between user application and middleware, the inte-
gration of the core components in the middleware using a message oriented approach
with a rule engine for message routing and workflow management, the long-term preser-
vation of content based on preservation-aware cloud-based storage where preservation
tasks and other processing activities executed close to the data (directly in the storage).

The integration of Active Systems and Preservation System with the PoF Middleware is
based on REST APIs, used to trigger preservation, re-activate content and monitor the
running processes or the preservation status of specific resources. Bi-directional data ex-
change between Active Systems and PoF Middleware is based on Content Management
Interoperability Services (CMIS) standard [OASIS, 2013]: the Active Systems publish the
content to be preserved using a CMIS compliant repository and the re-activated content
is provided by the PoF Middleware using another CMIS repository deployed in the mid-
dleware. Hence, any user application supporting CMIS can be seamlessly integrated with
the PoF Framework. Further information about CMIS is in Section 4 and Section 6.

c© ForgetIT Page 11 (of 93)

ForgetIT Deliverable 8.4

Figure
1:

PoF
Fram

ew
ork

com
ponentdiagram

:
the

com
posite

structure
w

ith
internalcom

ponents
is

show
n.

Page 12 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

3 PoF Reference Model

The PoF Reference Model serves as conceptual guideline for the integration process of
the PoF Framework and aims to encapsulate the core principles of the ForgetIT approach
into a re-usable model. The forgetful, focused approach to digital preservation makes
easier the adoption of preservation technology in the personal and organizational context.
In the following we summarize the main concepts for the functional part of the model (see
deliverable D8.2 [ForgetIT, 2015g]), relevant for the prototype description.

Figure 2: High-level functional view of the PoF Reference Model (from D8.2).

A representation of the functional part of the model is depicted in Figure 2. The frame
represents the domain of our model, where information and preservation systems are
considered as part of a joint ecosystem, which stresses the smooth transitions and the
synergetic interactions rather than the system borders. The functional part is made up of
three layers. The Core Layer considers basic functionalities required for connecting the
Active System and the Preservation System; building upon this layer, the Remember &
Forget Layer introduces brain-inspired and forgetful aspects; finally, the Evolution Layer
is responsible for all types of functionalities dealing with long-term change and evolution,
such as implementing the contextualized remembering. For each layer we also show the
functional entities and the representative workflows (double pointed arrows). The position
of the workflows is associated to the layer they belong to, so for the outer arrows the
Evolution layer. The precise positions are meant to show which part each of the evolution
workflows is closer to, e.g. the situation change is closer to the Active System, the system

c© ForgetIT Page 13 (of 93)

ForgetIT Deliverable 8.4

change can affect both Active and Preservation System, and the setting changes are
mainly observed in the Preservation System.

Among all workflows in D8.2, we mention here the Preservation Preparation and the
Re-activation workflow: the former (Figure 3) is responsible for transferring content to
be preserved from the Active System to the Preservation System, the latter (Figure 5)
enables the Active System to retrieve and re-activate content previously transferred to the
Preservation System. The different steps and functional entities are shown.

Figure 3: Preservation Preparation workflow in the Remember & Forget Layer (from D8.2).

Figure 4: Mapping between the PoF Middleware components and the Preservation Prepa-
ration workflow (from D8.2).

Page 14 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Figure 5: Re-activation workflow in the Remember & Forget Layer (from D8.2).

Figure 6: Mapping between the PoF Middleware Components and the Re-activation work-
flow (from D8.2).

Figure 4 and Figure 6 show how the PoF Middleware components are mapped to the two
aforementioned workflows. The other framework components outside the middleware,
such as the Active System and the Preservation System (including its internal compo-
nents) are associated to the functional model workflows, mainly for the Evolution Layer,
see Section 4.3 of deliverable D8.2 for further examples.

The mapping between the PoF Reference Model functional entities and the PoF Middle-
ware components is reported in Table 1. It is worth noting that more than one component
can participate in the implementation of a given functional entity of the model.

c© ForgetIT Page 15 (of 93)

ForgetIT Deliverable 8.4

The Scheduler component is not explicitly mentioned in Table 1, since it mainly provides
process management functionalities across the three model layers.

Functional Entity Model Layers PoF Middleware Compo-
nents

ID Management Core, Remember &
Forget

ID Manager

Exchange Support Core, Remember &
Forget

Collector, Archiver,
Metadata Repository

Content Value Assessment Remember & Forget Forgettor
Managed Forgetting & Ap-
praisal

Remember & Forget Forgettor

Contextualization Remember & Forget Contextualizer, Ex-
tractor, Condensator

De-contextualization Remember & Forget Contextualizer
Re-contextualization Remember & Forget Contextualizer,

Archiver
Search & Navigation Remember & Forget Navigator
Context Evolution Manage-
ment

Evolution Context-aware
Preservation Man-
ager, Contextualizer

Context-aware Preservation
Management

Evolution Context-aware
Preservation Man-
ager

Preservation Planning Evolution Context-aware
Preservation Man-
ager

Administration Evolution Context-aware
Preservation Man-
ager

Pre-ingest Evolution Archiver

Table 1: Mapping between PoF Reference Model functional entities and the PoF Middleware
components (from D8.2).

The other model workflows which are not shown here will be implemented in the final
framework release.

Page 16 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

4 PoF Middleware

In this Section we describe the implementation of the PoF Middleware and the integra-
tion with Active Systems and Preservation System. We also describe the use of CMIS
standard for data exchange between user applications and the PoF Framework. The
components integrated in the PoF Middleware are described in Section 5.

4.1 PoF Enterprise Service Bus

The PoF Middleware has been designed using the Enterprise Service Bus (ESB) ap-
proach. The ESB is a well-established architecture design which has been adopted
in many enterprise applications and systems over the past ten years and is still very
popular in the implementation of both commercial and open source solutions. The role
of the ESB in the middleware has been discussed in many previous deliverables, both
from the architectural point of view (see for example deliverables D5.1 [ForgetIT, 2013c],
D5.2 [ForgetIT, 2014c] and D8.1 [ForgetIT, 2013d]) and from the implementation point of
view (see deliverable D8.3 [ForgetIT, 2014e]). In a nutshell, the role of the ESB in the PoF
Middleware is mainly intended to provide a communication layer for all components, pro-
viding loose coupling and reducing the dependency between the components: using the
ESB approach, the number of point-to-point connections among the components and the
number of point of failures is reduced to a minimum (if not to zero) and the only require-
ment to get on the bus is to agree with the service contract, namely to integrate with the
communication APIs exposed by the ESB and to support data exchange using a common
exchange format. For a description of the ESB approach, see [Chappell, 2004].

4.1.1 Message-Oriented Middleware

In order to implement the PoF ESB, we adopted the Message Oriented Middleware
(MOM) approach, where data and other information is received by or passed to the com-
ponents connected to the ESB in the form of messages, as shown in Figure 7: this
means that only a representation of the data is exchanged and this can be processed
and modified locally by each component. A MOM lies between the applications acting as
a message mediator between them by means of a communication channel that carries
self-contained units of information which are the messages. The MOM mediates events
and messages among distributed systems providing the required degree of decoupling.
Figure 7 provides a view of this kind of architecture.

A MOM is intended mainly for communication in an loosely-coupled, reliable, scalable
and secure manner amongst distributed applications or systems. Compared to situations
where the information exchange takes place directly among the distributed applications
(coupling), the MOM makes use of asynchronous messaging and the message senders
(Producers or Publishers) know nothing about receivers (Consumers or Subscribers) and

c© ForgetIT Page 17 (of 93)

ForgetIT Deliverable 8.4

Figure 7: Message based communication, taken from [Chappell, 2004].

receivers know nothing about senders, as depicted in Figure 7. MOM is a suitable solution
for the management and the integration of the various components in the project, where
several heterogeneous components are integrated in a middleware and asynchronous
communication is a requirement. If the MOM provides a reliable and flexible communica-
tion infrastructure, we need to organize the data flow and task execution with messages
in order to implement complex workflows.

The MOM also has the responsibility to ensure that the messages reach their intended
destination and that they are not lost in case of network failure, therefore the messages
have to be stored into a persistent memory and accessed when requested from the Con-
sumer. This feature is referred to as message persistence. Figure 8 depicts an example
of message exchange where the Consumer looses the connection to the MOM but the
message does not get lost.

Figure 8: Example of message persistence, taken from [Chappell, 2004].

Page 18 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

4.1.2 Enterprise Integration Patterns

For the implementation of the different workflows, we make use of Enterprise Integration
Patterns (EIP), defined in the fundamental book by G. Hohpe [Hohpe and Woolf, 2003].
The EIP approach has been extensively adopted to design asynchronous messaging
architectures used to build integration solutions and is used in several enterprise-class
applications. The book describes 65 design patterns for the use of Enterprise Application
Integration (EAI) and MOM in the form of a pattern language. They are accepted solu-
tions to recurring problems within a given context. Patterns are abstract enough to apply
to most integration technologies, but specific enough to provide hands-on guidance to
designers and architects. Patterns also provide a vocabulary for developers to efficiently
describe their solution. Patterns are not ’invented’; they are harvested from repeated use
in practice. A coherent collection of relevant patterns that form an integration pattern
language is available on the EIP web site1.

An example of typical EIP is the Message Router, depicted in Figure 9. A Message
Router pattern can be used to decouple a message source from the ultimate destination
of the message, acting as a special filter which consumes a message from one mes-
sage channel and republishes it to a different message channel depending on a set of
conditions. The Message Router connects to multiple output channels and the compo-
nents surrounding the Message Router are completely unaware of the existence of a
Message Router. A key property of the Message Router is that it does not modify
the message contents, being only concerned with the destination of the message. This
pattern has been extensively used in the implementation of internal PoF Middleware com-
ponents.

Figure 9: Message Router Enterprise Pattern.

Another pattern example, which was frequently used in the PoF Middleware implementa-
tion is the Service Activator, depicted in Figure 10. A Service Activator con-
nects a message channel to a synchronous service, which is invoked whenever a mes-
sage is received. The activator receives the message (asynchronously) and is capable
to identify which service to invoke (synchronously) and what data to pass by process-
ing the message and extracting information necessary to invoke the service, such as the
query parameters. The activator can always invoke the same service (for example in the

1Enterprise Integration Patterns - http://www.eaipatterns.com/

c© ForgetIT Page 19 (of 93)

http://www.eaipatterns.com/

ForgetIT Deliverable 8.4

middleware implementation we used configuration properties), or can use invoke a given
service based on message content. The main purpose of the activator is to manage the
messaging details and invoke the service like any other client (the service is not aware
that it is invoked through messaging). In this way the service developers can assume that
their service will always be invoked synchronously, without messaging, and the activator
enables service invokation thorugh messaging. After invoking the service, the aggregator
blocks during service execution till request completion: when the service returns the re-
sult, the activator can return a message with such information, so the service invocation
using an activator implements a regular Request-Reply behaviour. A Service Activa-
tor is also serving as another pattern, the Messaging Gateway, since it separates the
messaging details from the service. The activator can be implement two patterns: the
Polling Consumer (it polls for a message, blocks while processing it and then polls
for another, returning immediately if no message is available) or a Event-Driven Con-
sumer (it is triggered by message delivery).

Figure 10: Service Activator Enterprise Pattern.

It is worth noticing that several patterns can be used in combination in order to achieved
the required behaviour: for example when describing the Service Activator pattern,
other patterns have been mentioned.

Some basic patterns have ben used very often in the middleware. Such patterns include
for example Request-Reply, Aggregator or Message Filter, just to name a few.
The full list of EIPs is available in [Hohpe and Woolf, 2003].

4.1.3 Asynchronous Routing Engine

Message routers control how messages are routed among the services in a ESB appli-
cation. Implementing a flexible and efficient message routing is crucial to fully exploit

Page 20 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

the benefits of asynchronous messaging. Different kinds of routers are available, associ-
ated to the different patterns. For the PoF Middleware implementation we used an asyn-
chronous routing engine supporting all the reference integration patterns to implement
business logic within the middleware.

In the PoF Middleware, the Scheduler component makes use of the Message Router
pattern described above to process the incoming messages and trigger specific workflows
based on the message properties. We provide an example taken from the middleware
source code in Appendix A, where the Scheduler message route is defined using Spring
XML and Apache Camel (see next Section). Based on the value of different headers for
the incoming message, a specific logic is implemented.

4.1.4 PoF ESB Implementation

For the implementation of the ESB we make use of Apache ServiceMix, in particular we
use ActiveMQ [Snyder et al., 2011] for implementing the messaging system (broker) and
Apache Camel [Ibsen and Anstey, 2010] for implementing a rule-based routing engine
running on top of the broker.

ActiveMQ is an open source, Java Message Service (JMS) 1.1 compliant MOM from
the Apache Software Foundation that provides high-availability, performance, scalability,
reliability and security for enterprise messaging. It also provides all the MOM functionali-
ties allowing the user to implement and customize specific message producers and con-
sumers that exchange information through queues and topics. ActiveMQ is commonly
adopted in enterprise scenarios when an asynchronous message bus is needed (see for
example [Henjes et al., 2007, DAI and ZHU, 2010] and other references available in the
literature).

On top of the message broker implemented by ActiveMQ, a rule-based routing and medi-
ation engine has been added, in order to implement the middleware workflows using one
of the EIPs. The rule engine is provided by Apache Camel.

As will be described in Section 8, the package eu.forgetit.middleware of the PoF
Middleware Java project contains the main classes for the implementation of the PoF
Middleware.

For the second release we also improved the monitoring interface for the messaging sys-
tem and the routing engine, using hawtio2, a web monitoring console based on HTML5
that integrates seamlessly with ActiveMQ and Camel: this graphical console replaces the
old ActiveMQ GUI and is multipurpose. The flow of messages in the different queues,
updated in real time during workflow execution, is shown in Figure 11. Additional screen-
shots of the hawtio console for the middleware instance running in the testbed are shown
in Appendix A.

2hawtio - http://hawt.io

c© ForgetIT Page 21 (of 93)

ForgetIT Deliverable 8.4

Figure 11: Message flow monitoring.

4.2 Middleware Configuration

The configuration of the messaging system and of the routing engine makes use of Spring
XML framework. Sample configuration files are described in Appendix A. The broker
configuration is used to instantiate the connection at start time when the PoF Middleware
server running in Apache Tomcat is started. The queues and the topics are automatically
created. Finally, all middleware components are defined as Spring beans, therefore their
instances are created and maintained over time by the Spring framework.

The configuration of Apache Camel using Spring XML is straightforward. Sample configu-
ration for the messaging broker and the route for two workflows (preservation preparation
and re-activation) is reported in Appendix A. Each workflow is represented as a sequence
of steps associated to specific Spring beans corresponding to the middleware compo-
nents. The Spring XML representation is associated to different patterns and defines a
language for implementing specific rules associated to the messages.

We also provide an excerpt of Java code taken from the Extractor in Appendix A: the
method for image analysis used in the Apache Camel route defined above makes use of
Exchange class, which is part of the Camel APIs and contains the message information
(header and body). This approach has been used for all components in the middleware.
The message header is typically used to share high-level information required for flow
control, while the message body contains the data. In the current implementation, we
use JavaScript Object Notation (JSON) format to represent message content. After pro-
cessing the message, extracting information and obtaining some results, the message
body and header can be updated and then passed to the flow control wrapped in the Ex-
change object. Following the asynchronous message approach, the next destination of

Page 22 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

the message is unknown to the component class, the new message is sent to one of the
instances of the next component in the flow using the route definition.

4.3 RESTful Service

REST APIs are published using Jersey3, the reference implementation of JAX-RS spec-
ification for RESTful web services. In the following we list the available APIs with the
expected parameters and the output format.

Server path /rest-api
Supported response types JSON and XML

Table 2: Server information

GET /rest-api/rest-api/application.wadl Returns the list of REST APIs in
WADL format, it is automatically up-
dated by Jersey when starting up
the server.

Table 3: Server APIs List

POST /resource Triggers Preservation Preparation
Workflow of single items or collec-
tions. Requires PV, CMIS Reposi-
tory ID and CMIS Object ID.

Table 4: Preservation APIs

GET /restore/{cmisServerId}/{cmisId} Triggers Re-activation Workflow for
specified resource. Requires CMIS
Repository ID and CMIS Object ID.

GET /restore?cmisServerId=...&cmisId=... Same as above but supporting
Query Params.

Table 5: Re-activation APIs

The list of APIs exposed by the PoF Middleware RESTful web server is available as WADL
format.

3Java Jersey - https://jersey.java.net

c© ForgetIT Page 23 (of 93)

https://jersey.java.net

ForgetIT Deliverable 8.4

GET /resource/cmisServerId/cmisId Returns information about
preserved resource (different
IDs,preservation status, metadata).
Requires CMIS Repository ID and
CMIS Object ID.

GET /resource?cmisServerId=...&cmisId=... Same as above but supporting
Query Params.

GET /resources/cmisServerId Returns information about pre-
served resources for the specified
CMIS Repository. Requires CMIS
Repository ID.

Table 6: Access APIs

GET /tasks/taskId/status Returns information for the speci-
fied Task. Task ID is returned when
submitting requests.

GET /tasks/taskId/result Returns results for the specified
Task. Alternative method to mes-
sage notifications. Task ID is re-
turned when submitting requests.

GET /tasks Returns information for all Tasks.
Only for administrative purposes.

Table 7: Task Monitoring APIs

4.4 CMIS Integration

Content Management Interoperability Services (CMIS) is an open standard that allows
different content management systems to inter-operate over the web, defining an abstrac-
tion layer for controlling diverse document management systems and repositories using
web protocols. CMIS defines a common data model, which encapsulates the core con-
cepts found in most content management systems, covering typed files and folders with
generic properties that can be set or read (see Figure 12). CMIS defines also protocol
bindings that can be used by applications to manipulate content stored in a repository,
using WSDL, SOAP and AtomPub. The CMIS specification provides an API that is pro-
gramming language-agnostic. The Java-based library provided by Apache Chemistry has
been used in the Collector component implementation.

An Active System can interact with the PoF Framework through the REST APIs described
above and exchanging data using CMIS standard [OASIS, 2013]. The Active System acts
as a data-deliverer, so any information system that supports CMIS could act as an Active
System in the PoF Framework. In Section 6 we describe the two main Active Systems
under test in the project (Semantic Desktop and TYPO3 CMS), along with other prototype
user applications which could be integrated with the framework.

Page 24 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Figure 12: CMIS data model, taken from Alfresco web site.

Each CMIS Object (cmis:item, cmis:document, cmis:folder) can be preserved in the PoF
Framework without sending the actual details about how the data is stored in the Active
System, since CMIS is used as a standard to exchange data between the Active System
and the middleware.

Several implementations of a CMIS repository are available and have been used in the
second framework release. For the Semantic Desktop the CMIS repository makes use of
the OpenCMIS (Apache Chemistry) library, while TYPO3 CMS uses Alfresco.

The PoF Middleware accesses the content in the Active System CMIS repository using
the CMIS ID which is provided when a preservation request is triggered using the REST
APIs or when an external process is triggering such preservation. See the description of
the Collector component in Section 5.6 for further details. The ID Manager component
manages the mapping between the CMIS ID and the other identifiers in the framework
(see Section 5.1).

The PoF Middleware can access these objects and pull required information. If the
PoF Middleware needs to know how many relations to this item exist it asks foreach all
cmis:relations. Relying on this CMIS standard enables the PoF to communicate with any
component that supports CMIS, which is flexible and doesnt require any special ForgetIT
implementations of the Active System to exchange data. Each document should contain
an information about what type of element the object is exactly.

The information provided using CMIS representation includes also the PV associated to
the resource. We foresee two different approaches here: the calculation of the PV could
be performed by the Active System itself (as done by the Personal Information MOdel
(PIMO), for example) or could provide different evidences for such calculation. This case
will be implemented for TYPO3 in the third release.

Different strategies can be implemented by an Active System after a given content is

c© ForgetIT Page 25 (of 93)

ForgetIT Deliverable 8.4

preserved, for example it could be deleted from the Active System CMIS repository (but
the Active System should be able to correctly identify it during re-activation).

When restoring an object from the Preservation System, the CMIS standard is used again,
because the PoF Middleware provides its own CMIS repository based on OpenCMIS
(Apache Chemistry) library: when requesting archived content, the PoF Middleware re-
turns a CMIS ID which can be used to fetch the content from middleware CMIS repository
(see REST APIs above). This can also enable new scenarios, when for example the
Active System is no more available and the archived content must be retrieved. This
scenario is under investigation for the final release.

4.5 Implementation of Reference Model Workflows

In this Section we describe the implementation of the two workflows defined in the PoF
Reference Model which have been implemented in the second prototype, as discussed in
Section 3: Preservation Preparation and Re-activation. For each workflow we present a
sequence of steps, with the help of some application screenshots.

4.5.1 Preservation Preparation Workflow

The Preservation Preparation workflow includes several tasks from the selection of the
content to be preserved up to the transfer of such content to the archive. The steps of the
workflow in relationship with the framework components are depicted in Figure 4.

In the following we describe the implementation of each step in the current prototype.
The select step is the first task in the workflow, which could be triggered by the Forget-
tor (e.g based on PV calculation or on other evidences provided by the Active System)
or by the Context-aware Preservation Manager (taking into account specific preservation
rules). These two components are still under development (see Section 5) and are not
fully integrated in the middleware, so this process is not fully automated. For demonstra-
tion purposes, the user triggers the preservation sending a request to the PoF Middleware
(the calculated PV can be used to guide the selection of the content to preserve). All the
other steps in the workflow have been fully implemented.

A simplified representation of the Preservation Preparation workflow is shown in Fig-
ure 13, where the details about the involved components and flow branches in case of
errors or exceptions have been omitted for the sake of clarity. The internal details of
the routing engine behaviour have been omitted as well: the messaging system and the
routing engine logic have been simplified using iterative or parallel expansion regions.

1. A preservation request is triggered by the Active System (see Figure 14): the CMIS
ID of the selected resource is sent to the middleware REST endpoint (see Table 4).
The CMIS resource can be a collection or a single item. The PV for the whole

Page 26 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Figure 13: UML activity diagram for the Preservation Preparation workflow.

collection or for the single item is also sent to the middleware. This task corresponds
to the select step in the workflow.

2. The next step in the workflow, provide, is implemented by different components. The
request sent to the middleware REST server is processed by the Scheduler, which
instantiates a new Task (with TaskType equal to PRESERVATION). The Task is
stored in the object DB used by the ID Manager and Metadata Repository. The Task
ID is returned to the user, this ID can be used to monitor the progress of the request
and to get the results when completed.

3. The Scheduler prepares a new message wrapping the received information about
the resource and sends it to the SCHEDULER.QUEUE. The message header con-
tains the information about the Task type. The flow control is now managed by
the routing engine, which takes care of dispatching the message to the appropriate
components.

4. The CMIS ID provided by the Active System (and stored in the message body) is
used to fetch information about the content to be preserved: based on CMIS object

c© ForgetIT Page 27 (of 93)

ForgetIT Deliverable 8.4

Figure 14: User interface of PIMO: selection of resource to be preserved.

attributes, the Collector checks whether the content to be preserved is a single
resource or a collection (e.g. a pimo:Lifesituation).

5. If the content is a single resource, a single message is sent to PRESERVATION.QUEUE.
If the content is associated to a collection, the Collector retrieves the information
about each resource in the collection (using the CMIS relationship attribute) and for
each resource the CMIS ID and the corresponding PV are retrieved. Currently for
the PV we choose a threshold equal to 0.8: only resources in the collection with
a high PV are considered eligible for preservation. The PV threshold is configured
in the Forgettor code deployed in the middleware. For each selected resource a
separate message is sent to the PRESERVATION.QUEUE. It is worth noticing that
also the collection itself is preserved: the package representing the collection has
no resources inside, but just a list of resources in the collection and some global
descriptions referring to the whole collection.

6. Note: in the following we describe the other steps in the workflow from the point
of view of a single resource; when dealing with collection each step is executed in
parallel for all resources in the collection and for the collection object itself. Currently
each resource is stored in the Preservation System as a separate package and the
collection package is used to preserve information about the aggregation (e.g. the
collection represents a photo collection for a business trip). The only step which
is referring to the whole collection is associated to the Condensator, because the
clustering algorithm is executed on the set of images in the collection.

Page 28 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

7. The messages sent to the PRESERVATION.QUEUE are consumed under the con-
trol of the routing engine. The next step is the ID generation: the ID Manager gets
the information about the CMIS ID parsing the message body, generates a new
unique ID (pofId) and stores the mapping between the two in its internal object
DB. From this step onward, all the other tasks use the pofId taken from the body
of the received messages. This task completes the provide step in the workflow.

8. After each resource is assigned a new unique ID, the Collector can fetch the files
from the Active System CMIS repository and store them on the middleware: for
each resource a folder named according to the unique ID is created. This folder is
the temporary folder for package preparation and is used during the next steps: a
sub-folder for the content and one for the metadata is created. The Collector fetches
all descriptive metadata associated to each CMIS object and stores such metadata
in its internal DB. Due to the asynchronous nature of the messaging layer, multiple
resources can be retrieved in parallel and the results are stored in the corresponding
folder with the unique name. This task completes the provide step in the workflow.

9. The enrich step in the workflow is also associated to different components. After the
retrieval process for a given resource has been completed, the Collector returns a
message to the routing engine containing information about the package folder for
that resource. The routing engine sends this information to the next component in
the flow, the Extractor.

10. The request sent to the Extractor contains information about content types for each
package. In the current implementation the Extractor executes image analysis for all
the images in the package, if any, otherwise it is skipped. The Extractor component
running in the middleware prepares a public URL for the images and sends this
information to the remote image analysis service running at CERTH. The image
analysis type is an additional parameter which can be configured in the workflow (in
the provided routing engine sample configuration all implemented image analysis
methods are executed).

11. The next step involves the Contextualizer, which processes messages for text re-
sources. The contextualization result is added to the temporary package folder, as
part of the metadata. A context referring to the whole collection could be stored in
the collection package.

12. An optional step is defined in the workflow, for collections of images: a clustering
algorithm (provided by the Condensator) can be executed. Currently if the num-
ber of selected images from the original collection is equal or greater than 10, the
Condensator is executed and the results are stored within the collection package,
since they are related to the whole collection and not to each resource separately.
The intermediate products (metadata files, temporary results, etc) are stored in the
middleware internal object DB or on the file system. This task completes the enrich
step in the workflow.

c© ForgetIT Page 29 (of 93)

ForgetIT Deliverable 8.4

13. The last two steps in the workflow, package and transfer, are assigned to a sin-
gle component, the Archiver. After all processing steps have been completed, the
Archiver receives a request message to prepare the package and submit it to the
Preservation System. The package is sent to the archive using its REST APIs. An
example of archived content in DSpace is shown in Figure 15: the resources and
the associated metadata are shown.

Figure 15: Preview of archived resource in DSpace.

14. The package submission is made up of two steps: first the package is imported into
DSpace and then it is copied in the cloud storage. Two additional IDs are assigned
to the package: a repositoryId (from DSpace) and a storageId (from cloud
storage). Both are added to the ID mapping for that resource and stored in the
object DB by the ID Manager (see Figure 16).

15. Different Storlets are executed in the Preservation-aware Storage System upon con-
tent ingest: for example a Metadata Enrichment Storlet is executed on text content
(the extracted metadata are indexed and are used by the metadata search function-
ality exposed by the cloud storage).

16. The steps above are executed for each resource. The status of the resource is up-
dated: resource is shown as preserved in the Active System. In case of collections,
the tasks above are executed for each resource in parallel and the preservation sta-
tus is updated only when the resources in collection and the collection object itself
have been correctly transferred to the Preservation System. This task completes
the transfer step in the workflow.

Page 30 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Figure 16: Web interface of the PoF Middleware, the different IDs associated to the same
content are shown, as well as the preservation status and the associated PV.

4.5.2 Re-activation Workflow

After the content has been successfully preserved, a request to restore one or more
resources can be triggered, as described below. This is associated to the Re-activation
workflow defined in the model. Currently almost all the steps have been implemented:
the only task which is still under development is the re-contextualization. Compared to
the first release, the re-activated content is now retrieved from the cloud storage, where it
has been actively preserved and possibly transformed.

1. The first step in the workflow is the request: the Active System can send a re-
quest to the PoF Middleware using the REST APIs, in order to restore or update the
preserved content locally.

2. Similarly to the Preservation Preparation workflow, the request sent to the middle-
ware REST server is is processed by the Scheduler, which instantiates a new Task
(with TaskType equal to REACTIVATION). The Task is stored in the object DB used
by the ID Manager and Metadata Repository. The Task ID is returned to the user,
this ID can be used to monitor the progress of the request and to get the results
when completed.

3. The Scheduler prepares a new message wrapping the received information about
the resource and sends it to the SCHEDULER.QUEUE. The message header con-
tains the information about the Task type. The flow control is now managed by
the routing engine, which takes care of dispatching the message to the appropriate
components. Additional information about the preserved content could be retrieved

c© ForgetIT Page 31 (of 93)

ForgetIT Deliverable 8.4

by the Collector. This task completes the request step in the workflow.

4. The next step in the workflow is the search: the ID Manager receives a message
whose body contains the CMIS ID of the preserved content to be reactivated (single
resource or collection). Using the ID mappings stored in the ID Manager object DB,
the repository and storage ID are retrieved. The Navigator can provide additional
search features, but currently it is not used because the content ID is provided. After
correct identification of the content, the search step completes.

5. During the retrieve step, the Archiver receives a message with the content in-
formation and retrieves it from the Preservation System sending a request to the
archive REST service. Compared to the original resource, the content is returned
as a package (including both resources and metadata, including the context). This
task is associated to the prepare step in the workflow. In case of collections, the
resources are retrieved separately and several packages are returned to the user.
This is under development, to combine multiple archived packages in a single dis-
semination package. This task completes the package step in the workflow (the
re-contextualization is still under development).

6. The last step in the workflow is the deliver: the content is published by the Col-
lector on the CMIS repository implemented in the middleware and can be accessed
by the Active System using the CMIS ID on the middleware repository. In order to
get this CMIS ID, the Active System can use two different mechanisms: using the
task monitoring mechanism, the task ID provided by the middleware at the begin-
ning of the workflow can be used to monitor the status of the re-activation process
and when the task is completed the CMIS ID is available in the task results (which
can be retrieved using the middleware REST API); alternatively, the Active System
can register with the messaging system and obtain a dedicated queue where such
notifications are published: a message consumer running in the Active System can
retrieve a message containing the CMIS ID. The task monitoring is currently used by
TYPO3 CMS, while for the Semantic Desktop the message queue is the preferred
mechanism.

7. The Active System can retrieve the content from the middleware CMIS repository
and the re-activation workflow is then completed.4

4A video showing preserve and restore can be seen in the Personal Preservation Pilot I at https:
//pimo.opendfki.de/wp9-pilot/preservation_sd.html

Page 32 (of 93) www.forgetit-project.eu

https://pimo.opendfki.de/wp9-pilot/preservation_sd.html
https://pimo.opendfki.de/wp9-pilot/preservation_sd.html

Deliverable 8.4 ForgetIT

5 PoF Middleware Integrated Components

Compared to the first prototype described in deliverable D8.3 [ForgetIT, 2014e], the sec-
ond framework release integrates in the PoF Middleware the updated versions of existing
components along with new ones. The individual components in the middleware are
shown in Figure 1. In this section, for each middleware component we briefly describe
the role in the overall framework, the contributing partners and reference deliverables, a
short description of the integration mechanism and the deployment information. We also
summarize the progress with respect to the first PoF Framework release and the workplan
for the third release.

An evaluation of possible licensing mechanisms for the PoF Framework source code has
been started in the ForgetIT consortium. A preliminary plan for licensing the core compo-
nents of the PoF Framework as open source is discussed in Section 8. In this Section we
provide licensing information for each component separately.

5.1 ID Manager

Component Role The ID Manager mediates between the IDs used in the Preservation
System components (Digital Repository and Preservation-aware Storage System) and
the IDs used in the Active Systems. Such IDs are associated to the resources to be
preserved and are used during Preservation Preparation and Re-activation workflows or
for monitoring the preservation status of the resources. The mapping is maintained by the
ID Manager using a unique ID which is generated and managed by the PoF Middleware
internally. The information is stored in a internal object DB, shared with the Metadata
Repository component (see Section 5.2).

WP and Deliverables The ID Manager is developed within WP8 (integration with the
messaging layer and ID management), WP3 (scheduling of forgetting process) and WP5
(scheduling of archiving process). The previous release was described in deliverable
D8.3 [ForgetIT, 2014e], the contributing partners are mainly EURIX and LUH.

Integration and Deployment The ID Manager is written in Java and is included in the
main PoF Middleware Java project (eu.forgetit.middleware.component package)
available in the project SVN repository (see Section 8). The dependencies are managed
with Maven. The APIs of the ID Manager are used by all internal components of the mid-
dleware: for example the Collector and Archiver components strongly depend on the ID
Manager to properly collect resources from the Active System and to archive resources
in the Preservation System. When the resource is a collection, an additional request is
sent to the Scheduler, so the different resources in the collection are retrieved in paral-
lel, based on preservation rules based on the concept of Preservation Value (PV) (see
WP3 deliverables). For example, in the current implementation only resources with a PV
above a given threshold are retrieved, the others are discarded. Based on the informa-
tion provided by the ID Manager, the PoF Middleware can return information to the Active

c© ForgetIT Page 33 (of 93)

ForgetIT Deliverable 8.4

Systems concerning the preservation status of the resources. ID Manager APIs are also
exposed to the other framework components outside the middleware, namely the Active
Systems and the Preservation System, through the middleware REST APIs (see Sec-
tion 4.3). Using such APIs, the Active System can trigger and monitor the preservation
of a given resource or can request content re-activation, by providing the CMIS ID (object
ID and repository ID) of a given resource: this information is used by the ID Manager
to create a new ID mapping during preservation preparation or to get the resource ID in
the Preservation System to fetch the preserved content during re-activation. The Preser-
vation System makes use of ID mapping through middleware REST APIs when a new
resource is preserved, to update the ID mapping in the ID Manager internal DB. The ID
Manager is instantiated using Spring XML (see Section 4.2), this is done automatically
at middleware service start up. The connection with the broker to produce and consume
messages is defined in the Apache Camel configuration, which defines the different routes
and includes the ID Manager in the process.

API and I/O Formats The ID Manager provides APIs for creating new IDs and main-
tains the mapping among different IDs. Main methods include generation of new ID and
retrieval of IDs from a internal repository. The APIs of the ID Manager and the associ-
ated classes in the middleware are shown in Figure 17. Currently the IDs used to iden-
tify a given resource are: pofId (middleware internal ID), cmisId and cmisServerId
(CMIS Object ID and CMIS Repository ID), repositoryId (ID generated by the Digi-
tal Repository, DSpace in the current implementation) and storageId (ID generated by
the cloud storage system, OpenStack Swift in the current implementation). As depicted
in Figure 17, the ID Manager provides the methods to generate new unique IDs (using
an internal seed) , to get the whole ID mapping or a specific ID associated to a given
pofId and also to update ID mapping information (for example, when the resource is
moved to cloud storage, a new repositoryId is added to the mapping). A Java inner
class IDMapping and an enumerator IdType are used to represent such mapping. The
IDMapping objects are Enterprise JavaBeans (EJB) instances, stored in a pure object
database, ObjectDB [obj, 2015], where Create Read Update Delete (CRUD) operations
are implemented using standard Java Persistence API. The ID mappings are managed
by means of get and set methods in order to edit the internal properties corresponding
to the given ID. The CRUD operations on the internal object DB are performed by the
DataManager class (see Figure 18), which provides the persistence methods (based
on Java Persistence API) to store IDMapping objects and is also used for persistence
of Task objects. The object DB used by the ID Manager to store IDs is also used to
implement part of the Metadata Repository functionalities, as described in Section 5.2.
Different standards are available for identifiers, in the current implementation we make
use of Universally Unique IDentifier (UUID) specification. The ID Manager is invoked in-
ternally during workflow execution, when assigning new IDs to the content processed in
the middleware or when parsing a collection. The connection with the messaging layer is
provided by the Exchange objects, which are passed to the broker using the messaging
API and are managed by the routing engine (see Figure 17). As shown in Figure 17, the
Collector and Archiver classes use the IDManager when the resources are fetched
from the Active System (to create a new IDMapping) or when they are archived (to up-

Page 34 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

date the IDMapping). The Collector and Archiver methods are shown in detail in
Figure 22.

Status and Workplan An updated version of the ID Manager has been developed for
the second prototype. This version provides all required features for ID management.
All planned functionalities have been implemented for this component, the integration
with the messaging layer has been completed and the current status is compliant to the
integration plan described in D8.1. For the final release, the only foreseen improvement
is associated to a refinement of mapping and better representation of the collections. The
ID Manager code will be updated if a new version of the Java JDK will be used or if a new
release of ObjectDB is available.

Documentation and Reference Links The APIs and usage examples are available in
the software documentation, see Section 8 . For Java Persistence API please refer to
official Java documentation, for ObjectDB information can be found on the project web
site [obj, 2015].

License The component is released under Open Source license, the same used for the
PoF Middleware, see Section 8. According to their website, the ObjectDB software is
available under Open Source license and used at no cost (including commercially) with
the restriction of maximum ten entity classes and one million entity objects per database
file, using it without these restrictions requires purchasing a license.

5.2 Metadata Repository

Component Role The Metadata Repository manages metadata extracted or computed
for individual documents and collections and makes them available for other compo-
nents. Examples of such metadata include descriptive metadata, relationship with other
resources, extracted entities or features, context information, MB and PV. The Metadata
Repository relies on the fact that all resources are identified by an unique ID (see ID
Manager in Section 5.1), which enables the retrieval of metadata stored in the repository
for a given resource. It is worth noting that the Metadata Repository is not intended for
persistence or long-term storage, since other components in the architecture are used for
this purpose. The Metadata Repository is used to store temporary information during the
execution of specific workflows in the middleware and as such it is shared among several
components.

WP and Deliverables The Metadata Repository is developed within WP8. It was not
included in the previous framework release. The main contributing partner is EURIX.

Integration and Deployment The implementation of the Metadata Repository was based
on available technologies, since the functionalities provided by this component are limited
and a lot of open source tools can be used. For the implementation we make use of
ObjectDB, as done for the ID Manager (see Section 5.1), since the ID Manager is re-
sponsible for storing metadata information associated to CMIS objects along with the IDs.

c© ForgetIT Page 35 (of 93)

ForgetIT Deliverable 8.4

Figure 17: Class diagram for ID Manager component, with associated classes. Association
with the Scheduler is related to process scheduling when creating new IDs.

Some metadata associated to the resources (retrieved by the CMIS client provided by
the Collector) are stored in such DB: the internal data structures for ID mapping contain
information about the source CMIS repository (associated to a given Active System), the
PV associated to the resource (provided by the Active System), the resource type (sin-
gle resource or collection), the relationship with other resources (in case of collection),
the preservation status (which is updated by the preservation workflow over time). The
information about the resource type and its relationships are retrieved from CMIS object
information before fetching the actual resources. Some components, such as the Collec-
tor and the Archiver, currently store the temporary metadata information also in their own
internal DB or on the file system, while other components, such as the Contextualizer and
the Extractor, just use the file system. This will be improved for the final release, in order
to use a shared repository for all components and avoid replication of information.

API and I/O Formats The information stored in ObjectDB only requires Java Persistence
API and the data structure is based on EJB technology. The EJB objects are then mapped
to other formats, such as XML or JSON, to fulfill specific requirements. The CRUD oper-
ations are performed by the DataManager class, shown in Figure 18.

Page 36 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Figure 18: Class diagram for Data Manager: methods based on Java Persistence API are
used for CRUD operations on the object DB. The Data Manager is part of the
ID Manager and Metadata Repository implementation, but is used also by the
Scheduler.

Status and Workplan The current solution for the Metadata Repository provides all ex-
pected functionalities. No major improvements are expected for the final release, the only
planned activity is the adoption of a single DB for all middleware components, to avoid
duplication.

Documentation and Reference Links Methods and examples for the DataManager to
store objects in the ObjectDB are available in the software documentation, see Section 8.
For Java Persistence API please refer to official Java documentation, further information
about ObjectDB can be found on the project web site [obj, 2015].

License The source code of this component is released as Open Source, as part of the
PoF Middleware code. According to their website, the ObjectDB software is available un-
der Open Source license and used at no cost (including commercially) with the restriction
of maximum ten entity classes and one million entity objects per database file, using it
without these restrictions requires purchasing a license.

c© ForgetIT Page 37 (of 93)

ForgetIT Deliverable 8.4

5.3 Scheduler

Component Role The Scheduler is responsible for managing and organizing middleware
activities, by receiving and dispatching requests for the different workflows and asyn-
chronous processes and by interacting with the messaging infrastructure. The Scheduler
triggers the different workflows, either by receiving input from other PoF Middleware com-
ponents or by executing scheduled activities. The other middleware components interact
with the Scheduler during the execution of complex processes. A typical example of such
interactions is provided by the Collector: when retrieving information about the resources
in the Active System, the request for actual resource retrieval (or the retrieval of multiple
resources in a collection) is sent to Scheduler, which creates the appropriate Tasks to
be executed asynchronously. Another example is related to the re-activation of content
archived in the Preservation System, which is scheduled by creating a specific Task. The
Scheduler is also invoked through the middleware REST APIs: based on the request type,
different Tasks are executed.

WP and Deliverables Component developed within WP8, since it is strongly related to the
middleware messaging layer. The main contributing partner is EURIX. The first version
was described in deliverable D8.3 [ForgetIT, 2014e].

Integration and Deployment The Scheduler is written in Java and is included in the main
PoF Middleware Java project (eu.forgetit.middleware.component package). In
the previous version a WorkflowManager class was used to bridge the gap between
the web server and the messaging layer, preserving loose coupling, but in the new re-
lease this has been removed, since this functionality is now provided by Apache Camel,
which acts as a rule-based routing engine for the messages in the broker and there-
fore is used for workflow definition and management (see Section 4). The Scheduler
class is depicted in Figure 19, along with associated classes. The Scheduler uses the
ConfigurationManager to get information about the middleware configuration (broker
URL, queues, remote services, DB connection, etc.) and the DataManager to perform
CRUD operations on the object DB described above and store information about Tasks.
The Task class and two Java enumerators, TaskType and TaskStatus, are used. The
TaskStatus contains the possible states for a Task, while TaskType is mapped to the
different workflows. Currently the Scheduler supports the Preservation Preparation and
Re-activation workflows defined in the PoF Reference Model (see Section 3), but all the
other workflows defined in the model will be supported in the final release. The Task
class is a EJB with different properties, such as the Task identifier, type, start time and
last completed step in the workflow. The Task body contains the results of the workflow,
typically as a JSON object, and is mainly used for monitoring purposes. The information
about each Task is stored in the object DB and is returned by the middleware through
specific REST APIs, described in Section 4. The Task identifier can be used as a token
for monitoring the progress of a given Task. The Scheduler is instantiated using Spring
XML (see Section 4.2), this is done automatically at middleware service start up. The
connection with the broker to produce and consume messages is defined in the Apache
Camel configuration, which defines the different routes and includes the Scheduler in the

Page 38 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

process.

API and I/O Formats The Scheduler APIs allow the scheduling of processes based on
time and events, to request status information and to delete scheduled events. A subset of
these APIs has been already implemented and is shown in Figure 19. The Scheduler cur-
rently exposes APIs for scheduling Tasks based on requests received by the middleware
REST web server or by scheduled activities defined within Apache Camel using Spring
XML configuration. According to the request type, the Scheduler can trigger different
workflows.

Status and Workplan Compared to the first release, the current version has been im-
proved and now leverages the routing engine implemented by Apache Camel. The sup-
port for Task management has been added and a more flexible approach for triggering
workflows and processes is used. The Scheduler provides public APIs for sending mes-
sages and for creating, deleting and updating Tasks. The workflow logic is no more hard-
coded in the Scheduler code, since it can be dynamically configured using Spring XML.
No major updates are expected for the third release for what concerns the Scheduler
code. Possible improvements are expected in defining scheduled activities using Spring
XML and Apache Camel and in Task management. The support for scheduled activities
is important to implement missing workflows defined in the Evolution Layer of the PoF
Reference Model. These workflows include periodic preservation tasks, monitoring of re-
sources and associated PV and other time-dependent activities. It is worth noting that
the current implementation already supports such periodic processes using Spring XML:
a dummy periodic process has been defined to test the stability of the routing engine (see
Section 4.2), this activity simply triggers the Scheduler and provides a control message,
but for the final release this mechanism will be used to trigger specific preservation tasks.

Documentation and Reference Links The APIs and usage examples are available in
the software documentation, see Section 8.

License The component is released under Open Source license, the same used for the
PoF Middleware, see Section 8.

5.4 Extractor

Component Role The Extractor takes as input the original media items (e.g. a text, an
image collection, a collection of texts or a collection of images) and extracts information
that is potentially useful not only for the subsequent execution of the Condensator (see
Section 5.5), but also for other components or functionalities of the overall framework
(e.g. search). Regarding image analysis methods, the current release of the Extractor
implements: concept detection, near duplicate detection, image quality assessment and
face detection. Text analysis methods cover basic linguistic processing, which fed into the
extraction of named entities and plays a role in the Condensator.

WP and Deliverables The Extractor is developed within WP4, the contributing partners

c© ForgetIT Page 39 (of 93)

ForgetIT Deliverable 8.4

Figure 19: Class diagram for Scheduler component, with associated classes.

are CERTH, USFD, TT. The different technologies that are required for realizing the Ex-
tractor were reviewed in deliverable D4.1 [ForgetIT, 2013b]. Text analysis tools, as well
as GATE [Cunningham et al., 2011], and image analysis tools (including an updated ver-
sion of concept detection, face detection, and near duplicate detection) are presented in
D4.3 [ForgetIT, 2015d]. Image quality assessment is presented in D4.2 [ForgetIT, 2015d].

Integration and Deployment All image analysis Extractor sub-components have been
deployed as REST services running in CERTH servers. The text extraction components
have been developed as GATE [gat,] applications. GATE enables the rapid deployment
and integration of GATE applications as web services. These can either be embedded
directly into other Java applications and components or accessed as REST services us-
ing GATE WASP, as detailed in D4.3. Additional information about GATE is also available
in [Cunningham et al., 2011]. The integration of the remote service providing Extractor
functionalities is achieved using a Service Activator Enterprise Integration Patterns
(EIP) (see Section 4.1.2): the service details are hidden to the other components. The
Extractor implementation is made up of two main classes: the Extractor class exposes
the image analysis methods and other methods to exchange messages with the broker,
while the ExtractorServiceConsumer class provides the methods to interact with
the REST service hosted by CERTH, which provides the actual image analysis meth-
ods. The Extractor class diagram is depicted in Figure 20. The Extractor method

Page 40 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

responsible for communicating with the messaging layer, consuming messages contain-
ing information about images to be processed, makes use of Exchange class, part of
Apache Camel API. The Extractor class parses the message and sends the appro-
priate request to the CERTH service through the ExtractorServiceConsumer class.
An excerpt of the Extractor code is shown in Listing 4. The ExtractorService-
Consumer class converts the received parameters into a REST request and then parses
the response of the CERTH server, returning the information to the Extractor class.
The main advantage of using a Service Activator pattern is the possibility to hide
the details of the RESTful service (the response can change or the URL can be updated,
for example) and also to deal with the issues related to web services, such as latency
or unavailability of the service, just to name a few. The information about the CERTH
service is stored in a configuration file and retrieved using the ConfigurationManager
class. The execution of a particular image analysis method is supported by the use of
a Java enumeration, MethodType. As shown in Figure 20, the progress of each image
analysis task is managed by the Scheduler. The integration of the Extractor component
in the middleware workflows is described in Section 4.

API and I/O Formats The REST APIs are documented in D4.2 and D4.3. The response
of the web server is returned in XML format. For example, the image quality assessment
takes as input an image (or a set of images) and returns its visual quality score by ex-
amining the presence of visual artifacts such as low contrast, noise, blur, etc., while the
concept detection calculates the confidence scores for a set of concepts which indicate
how much each concept is related to the image, taking as input an image (or a set of
images) and returning for each image a vector that contains the confidence scores for all
the concepts.

Status and Workplan In the first framework release, the Extractor contained two im-
age analysis sub-components, for concept detection and image quality assessment. The
current version has an updated concept detection method and two new methods: near
duplicate image detection of an image collection and face detection. Furthermore, all im-
plementations are written in C++ and are much faster than the previous ones. The text
components are integrated via GATE WASP (see D4.3), allowing for an infinite variety
of applications to be made available via the Extractor and integrated within the use case
tools. Future releases will contain updated versions of the above sub-components as
well as new components. Some new media analysis methods will be: face clustering,
online concept training, video analysis, quality assessment, etc. It is also envisaged that
a number of new text extraction applications will be requested via the use cases and will
be integrated as required.

Documentation and reference links Additional information about the Extractor com-
ponent and the RESTful web service hosted by CERTH can be found in deliverables
D4.2 [ForgetIT, 2014b] and D4.3 [ForgetIT, 2015d], which also provide some usage ex-
amples.

License CERTH libraries are Copyright c©2013-2015 CERTH, third-party libraries are
available under open source (BSD) or as patented code in some countries. Some of the

c© ForgetIT Page 41 (of 93)

ForgetIT Deliverable 8.4

image analysis sub-components make internal use of third-party software and libraries,
such as OpenCV (BSD license) and Liblinear (Copyright c©2007-2015 the LIBLINEAR
Project). GATE (and associated software) [gat,] is available under an open source li-
cense, mostly GNU LGPL v3, although some code is covered by the GNU AGPL.

Figure 20: Class diagram for Extractor, with associated classes.

Page 42 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

5.5 Condensator

Component Role The Condensator takes as input the output of the Extractor (see Sec-
tion 5.4), in order to generate a condensed output of text and media items. Based on this
input, the Condensator performs further text and image analysis tasks whose results are
specific to the condensation process and thus of no need to other parts of the ForgetIT
system. No feedback loop from the Condensator back to the Extractor is performed (thus,
the Condensator can only be called after the Extractor has been executed for the pro-
cessed data, and the Condensator results are not fed in any way back to the Extractor).
The final output of the Condensator are the condensed media items or collections (sub-
set of media items, condensed text etc.). Regarding image media, the current release
contains a clustering method that is able, based on image features and image metadata
(captured time and GPS location) to cluster the images into separate events. For what
concerns text, the Condensator provides linguistic simplification and statistically-based
single document summarization.

WP and Deliverables The Condensator is developed within WP4, the contributing part-
ners are CERTH, USFD, TT. The different technologies that are required for realizing the
Condensator were reviewed in deliverable D4.1 [ForgetIT, 2013b]. The text summariza-
tion methods and the image clustering methods are presented in D4.3 [ForgetIT, 2015d].

Integration and Deployment The image clustering sub-components in the Condensator
has been deployed as REST services running in CERTH servers. The text extraction
components have been developed as GATE [gat,] applications. These can either be em-
bedded directly into other Java applications and components or are accessed as REST
services using GATE WASP as detailed in D4.3. Similarly to the Extractor, the integration
of the remote service providing Condensator functionalities is achieved using a Service
Activator Enterprise Integration Patterns (EIP) (see Section 4.1.2). The Condensator
implementation is made up of two main classes: the Condensator class exposes the
image clustering methods and other methods to exchange messages with the broker,
while the CondensatorServiceConsumer class provides the methods to interact with
the REST service hosted by CERTH, which provides the actual image clustering meth-
ods. The Condensator class diagram is depicted in Figure 21. The Condensator
method responsible for communicating with the messaging layer, consuming messages
containing information about images to be processed, makes use of Exchange class.
As described for the Extractor, the Condensator class parses the message and sends
the appropriate request to the CERTH service through the CondensatorServiceCon-
sumer class, which converts the received parameters into a REST request and then
parses the response of the CERTH server, returning the information to the Condensator
class. The information about the CERTH service is stored in a configuration file and re-
trieved using the ConfigurationManager class. As shown in Figure 21, the progress
of each Condensator task is managed by the Scheduler.

API and I/O Formats The REST APIs are documented in D4.2 and D4.3. The response
of the web server is returned in XML format, as done for the Extractor.

c© ForgetIT Page 43 (of 93)

ForgetIT Deliverable 8.4

Status and Workplan In the first framework release, the Condensator contained an im-
age clustering method that was using only image visual features. The current version
has an updated clustering method that employs more image features and doesn’t require
the number of clusters as input. Furthermore, this implementation is in C++ and it is
much faster than the previous one. The text components are integrated via GATE WASP
(see D4.3), allowing for an infinite variety of applications to be made available via the
Condensator and integrated within the use case tools. Future releases will contain up-
dated versions of the sub-components above. In the case of media contextualization, the
method will be updated by employing more cues (e.g. face clustering results) and it will
be extended including not only image collection but also video collection summarization.
It is envisaged that a number of new text extraction applications will be requested via the
use cases and will be integrated as required. For example, it is already planned to include
multi-document summarization as this is required in one of the WP9 use case scenarios.

Documentation and reference links Additional information about the Condensator com-
ponent and the RESTful web service hosted by CERTH can be found in deliverables
D4.2 [ForgetIT, 2014b] and D4.3 [ForgetIT, 2015d], which also provide some usage ex-
amples.

License CERTH libraries are Copyright c©2013-2015 CERTH, third-party libraries are
available under open source (BSD) or as patented code in some countries. Some of the
image analysis sub-components make internal use of third-party software and libraries,
such as OpenCV (BSD license) and Liblinear (Copyright c©2007-2015 the LIBLINEAR
Project). GATE (and associated software) [gat,] is available under an open source li-
cense, mostly GNU LGPL v3, although some code is covered by the GNU AGPL.

5.6 Collector/Archiver

Component Role The Collector/Archiver is the framework component which communi-
cates and exchanges data with both the Active Systems (Collector) and the Preservation
System (Archiver). In the Preservation Preparation workflow (see Section 3), the Collec-
tor/Archiver is responsible for automatically fetching digital content from Active Systems
(Information Systems), assemble content and metadata to create a Submission Informa-
tion Package (SIP), ready for transfer to receiving Preservation System. This component
automatically fetches content, metadata, and physical/logical structure from Active Sys-
tem using the CMIS protocol. At the end of the Preservation Preparation process, the
Collector/Archiver assembles extracted additional metadata and content to create a SIP
based on the eARD specification and makes use of standardized metadata schemas
adapted to receiving ingest functional entity in the Preservation System. The Collec-
tor/Archiver creates the acrshortsip structure based on the package structure defined in
WP5. When the SIP is built, the results from all components (secondary products or trans-
formed resources, as well as additional metadata files) are collected. This process also
includes file identification and computation of fixity checksums. The Collector/Archiver
is also in use in the Re-activation workflow where digital content is brought back from

Page 44 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Figure 21: Class diagram for Condensator, with associated classes.

Preservation System to use in Active System. Resources in the Preservation System
can be retrieved using the Collector/Archiver, which interacts with the ID Manager to get
information about the resource IDs (see Section 5.1). In this process this component is re-
sponsible for uncompressing received DIP and restructuring it according to Active System
needs. During the processing of Preservation Preparation and Re-activation workflows,
the Collector/Archiver interacts with the PoF Middleware workflow manager (ESB) using
the REST architectural style.

WP and Deliverables The Collector/Archiver component is developed within WP5, part-
ners responsible are LTU and EURIX. The first version of Collector/Archiver has been
described in D5.2 [ForgetIT, 2014c]. The second version, integrated in the second proto-
type, is described in deliverable D5.3 [ForgetIT, 2015e].

Integration and Deployment The Collector/Archiver is implemented by different software
components. Two Java classes are deployed in the middleware Java code, Collector
and Archiver. These classes provide methods for sending and consuming messages,
using the Exchange class defined in Apache Camel APIs, and also methods for fetching
content from the Active System and for importing content into the Preservation System.
The core functionalities of the Collector/Archive are deployed as a separate RESTful web
service running in the testbed environment, along with the middleware code. In order
to interact with this service, a Service Activator pattern (see Section 4.1.2) is used
and three classes have been defined: for the Collector functionality, the CollectorSer-

c© ForgetIT Page 45 (of 93)

ForgetIT Deliverable 8.4

viceConsumer communicates with the Collector REST APIs to trigger content and meta-
data retrieval from the Active System (see Figure 22); for the Archiver functionality, the
DigitalRepositoryServiceConsumer class communicates with the Archiver REST
APIs to package the content and with the Digital Repository REST APIs to ingest the
SIPs and get information about archived content, while the CloudStorageService-
Consumer communicates with the Preservation-aware Storage System to store content
in the SIP (see Figure 23). The Preservation System is described in Section 7, where
further details about the Digital Repository and the Preservation-aware Storage System
are provided. As depicted in Figure 22 and Figure 23, the Collector/Archiver uses the
ID Manager to get information about IDs and to update the ID mappings, while the man-
agement of Collector/Archiver tasks is performed by the Scheduler. The activation of this
component in the two main workflows is described in Section 4, where we also describe
the use of Spring XML for workflow definition and for instantiating each component.

API and I/O Formats The Collector/Archiver exposes REST APIs which are documented
in deliverable D5.3.

Status and Workplan The second version of the Collector/Archiver has been improved
with additional features: extended support for metadata schemas, automatic fetching of
additional contextual metadata and extraction of technical metadata, support for identi-
fication of file formats, extraction of file format identifiers based on PRONOM Persistent
Unique Identifier (PUID), that provides the ability to integrate with the PRONOM format
registry5, support for management of physical and logical content structure from CMIS
repository on the Active System, improved integration in the middleware with the imple-
mentation of REST interfaces for fetching, packaging and re-activation features. The
Collector/Archiver is still under development, the current prototype supports the Preser-
vation Preparation and Re-activation workflows in the PoF Middleware by REST interface.
The work plan for the third framework release includes: implementation of process log-
ging to support functional validation and workflow redirection at errors and exceptions
(using alternative workflows) , integration with the Context-aware Preservation Manager
(CaPM) component (see Section 5.10), restructuring of internal component architecture
for increased reuse and integration capabilities.

Documentation and Reference Links Documentation of the component architecture
and its interaction with internal and external components is in preparation, the description
of the current prototype is available in deliverable D5.3 [ForgetIT, 2015e].

License The code of the Collector/Archiver is released by LTU as open source. The
source code is currently available in the ForgetIT SVN repository.

5.7 Forgettor

Component Role The Forgettor is responsible for basic operations in the information
value assessment. It takes information of the resources in the Active System, applying

5PRONOM - http://www.nationalarchives.gov.uk/PRONOM

Page 46 (of 93) www.forgetit-project.eu

http://www.nationalarchives.gov.uk/PRONOM

Deliverable 8.4 ForgetIT

Figure 22: Class diagram for the Collector, with associated classes.

different methods in the managed forgetting framework, and provides outputs about the
two values: Memory Buoyancy (MB) and the Preservation Value (PV) for each resource.
These values will then be used by other components (e.g. Collector, Archiver, or Con-
textualizer). This component consists of three major sub-components: MB assessor, PV
assessor, and the Policy Engine. The MB assessor and PV assessor are responsible
for computing the MB and PV in an automated or semi-automated fashion. These sub-
components implement the novel managed forgetting methods that are developed within
the WP3. The Policy Engine incorporates human preferences (individual or organiza-
tional) to the outputs given by the assessors, adapting them to specific scenarios defined
by humans. The values of the Policy Engine will be used as the final output of the For-
gettor that are exchanged to other components. Sub-components in the Forgettor are
interfaced with other components via web services, web-based user interface, and are
called periodically as a background process.

WP and Deliverables This component is developed in the WP3, with contributions from
LUH, DFKI, CERTH, TT. The foundations of the MB / PV assessors are described in
deliverable D3.1 [ForgetIT, 2013a]. The first prototype of the MB assessor is described in
deliverable D3.2 [ForgetIT, 2014a], and is followed up by a case study for the evaluation
in deliverable D3.3 [ForgetIT, 2015c]. Deliverable D3.3 [ForgetIT, 2015c] discusses the
Policy Engine design and implementation. It also describes the first prototype of the PV
assessor that focuses on the photo preservation scenario.

c© ForgetIT Page 47 (of 93)

ForgetIT Deliverable 8.4

Figure 23: Class diagram for the Archiver, with associated classes.

Integration and Deployment The three sub-components are developed separately within
WP3, and the comprehensive integration into the middleware is yet on plan for the Year
3. The MB assessor interfaces with the Active System via web service (see Appendix
B), as well as standalone Java packages that are deployed in the PIMO system, so as to
preserve the privacy of resources in the experiment phase. The PV assessor prototype
for computation of photo PV takes one collection of photos as input and returns the PV for
each photo in the collection. The method implemented by this sub-component has been
described in detail in D3.3 [ForgetIT, 2015c]. It has also been exposed as web service to
be used within Scenario 1 (see Appendix B), although it still has to be integrated in the
ForgetIT middleware.

Policy Engine Integration: The Policy Engine is interfaced with web-based applications.
There are two applications deployed:

• Basic Policy Engine: Targeting normal users who are the owners of the the digital
documents to be preserved. It supports basic policy customization via question
answering, exploring the information values of digital documents from the active
systems (TYPO3, PIMO)6

• Advanced Policy Engine: Targeting advanced users who are the rule experts7.
It supports management user interface, rule editor to specify rules (in machine-
readable format .drl [ForgetIT, 2015c]).

6Basic Policy Engine - http://forgetit.l3s.uni-hannover.de:8787/policy-basic
7Advanced Policy Engine - http://forgetit.l3s.uni-hannover.de:8787/policy-advanced

Page 48 (of 93) www.forgetit-project.eu

http://forgetit.l3s.uni-hannover.de:8787/policy-basic
http://forgetit.l3s.uni-hannover.de:8787/policy-advanced

Deliverable 8.4 ForgetIT

Domain experts use the advanced interface to create and manage policies for different
scenarios. Once finished, the policies are bundled as a Java package, compatible with
Maven. Indeed, there is currently a local Maven repository used to maintain the policies in
the Forgettor component. The normal users run the basic interface, which connects itself
to the Maven repository and the database of digital documents of the Active Systems, and
explore the information values as after applying the policies. User feedback towards the
values are stored back in the database, which will be used later for adapting the Forgettor
in the next rounds.

API and I/O Formats This is in progress and will be reported in the coming deliverables.
The PV assessor for photo scenarios are described in Appendix B. For the MB assessor,
the experimental APIs are described in Appendix C.

Status and Workplan The Forgettor component is currently under development accord-
ing to the plan in deliverable D8.1 [ForgetIT, 2013d]. A new version will be integrated in the
next release of the PoF Framework. Below reports the ongoing status of the development
of the two sub-components.

Status of Policy Engine:

The current prototype of the Policy Engine consists of two main parts: The computa-
tional part facilitates the creation, management and exploration of policies, and the model
part consists of domain expert-assisted policies, data models for specific scenarios. Cur-
rent contributing partners of the two parts include L3S and DFKI. The data models and
rules are provided by domain experts who operate the Active Systems, and embedded
as POJO classes in the backends of the two applications. For the moment, information
about digital documents are mirrored at the local database of the Forgettor to test the
workflow. Next step would be exchanging the information via web services between the
active systems and the Policy Engine, so as to preserve the privacy and support continu-
ous integration.

Status of MB Assessor:

The MB assessor is responsible for estimating the MB values of a resource (Section 5.2,
D3.1) in personal preservation contexts. The sub-component relies on the activity history
of users in the information space (his Semantic Desktop), as well as the ontological knowl-
edge of the resource, including its structures and its relationships with other resources.
In the middleware layer, the MB Component is used as a service by the clients (PIMO or
TYPO3 systems) to numerically assess a resource.

The MB assessor has two parts. The first part serves as a background job that periodically
gets triggered and estimates the resources’ MB values. The results are then cached in a
database. The second part, which is deployed directly to the middleware, is a web service
repository that dispatches requests about MB values to the database and return results
for respective context (time, persons who question, ...).

Documentation and reference links Additional information about the component can be
found in deliverable D3.2 Section 2.2-2.3 [ForgetIT, 2014a].

c© ForgetIT Page 49 (of 93)

ForgetIT Deliverable 8.4

License: The policy engine and the advanced interface is developed using JBoss Drools
Business Rule Management system8 under the license ASL 2. The basic interface is de-
veloped using Google Web Toolkit9 under the Apache license 2.0. The other components
are available under GNU License GPL v3.0, Creative Commons License 3 and Apache
License 2.0.

5.8 Contextualizer

Component Role The Contextualiser takes as input the original media items (e.g. a
text, an image, a collection of texts or a collection of images) and output from previous
components (mainly the Extractor, see Section 5.4) and determines the wider context
within which the item resides [Gorrell et al., 2015]. In conjunction with the Context-Aware
Preservation Manager (see Section 5.10) the original item is then packaged for preserva-
tion along with the context information which enables the complete understanding of the
item.

WP and Deliverables This component is developed within WP6, the contributing part-
ners are USFD, LUH, CERTH, LTU, IBM, and DFKI. Deliverable D6.3 [ForgetIT, 2015f]
describes the current status of the components and their integration within the PoF Mid-
dleware. Specifically three components for contextualization (two focused on text and one
on images) are described alongside one component for the re-contextualization of text.

Integration and Deployment The prototype version of the contextualization via disam-
biguation component has been deployed as a REST service based on GATE [gat,], in-
tegrated into the PoF Middleware. The class diagram for the Contextualizer is shown
in Figure 24, where the associated ContextualizerServiceConsumer class is also
shown. Also for the Contextualizer we make use of the Service Activator EIP (see
above for further details).

API and I/O Formats A number of the contextualization components are fully integrated
within the PoF Middleware and all are accessible to other consortium members directly in
some form (usually as a RESTful service).

Status and Workplan The workplan for this component is focused on three main areas;
use case integration, context evolution, and evaluation. Updated versions taking these
three points into account will be documented and delivered as part of D6.4 [ForgetIT, 2016a]
by the end of the project.

Documentation and Reference Links Additional information about the Contextualizer is
available in deliverable D6.3 [ForgetIT, 2015f]. A demo version of one of the text based
approaches to contextualization can also be accessed on GATE services web site10.

8Drools - http://www.jboss.org/drools
9Google Web Toolkit - http://www.gwtproject.org

10GATE Contextualization Service - http://services.gate.ac.uk/forgetit/
contextualization/

Page 50 (of 93) www.forgetit-project.eu

http://www.jboss.org/drools
http://www.gwtproject.org
http://services.gate.ac.uk/forgetit/contextualization/
http://services.gate.ac.uk/forgetit/contextualization/

Deliverable 8.4 ForgetIT

License CERTH libraries are Copyright c 2013-2015 CERTH, third-party libraries are
available under open source (BSD) or as patented code in some countries. Some of the
image analysis sub-components make internal use of third-party software and libraries,
such as OpenCV (BSD license) and Liblinear (Copyright c 2007-2015 the LIBLINEAR
Project). GATE (and associated software) is available under an open source license;
mostly GNU LGPL v3, although some code is covered by the GNU AGPL.

Figure 24: Class diagram for Contextualizer, with associated classes.

5.9 Navigator

Component Role The Navigator component provides the basic access to the preserved
contextualized items. This allows access regardless of the presence of an Active System.
This comprises metadata search which may take place within the archive (or object store)
as well as search of the context information, the indexes for which are kept within the
middleware for the purpose of efficient access.

WP and Deliverables The Navigator is a product of WP6 and WP8. As the current
version is just a test bed it has not yet been documented in a deliverable, but it will be
reported in D6.4 [ForgetIT, 2016a] and D8.6 [ForgetIT, 2016b] both of which are due by
the end of the project.

Integration and Deployment The current version of this component is not integrated
within the PoF Middleware as it was developed as a test bed for ideas and was never
envisaged as a final component. This will clearly change by the time of the final release
of the framework and components.

c© ForgetIT Page 51 (of 93)

ForgetIT Deliverable 8.4

API and I/O Formats The Navigator component is still under development. Currently a
web interface has been implemented as part of Scenario 2 (see Appendix B, the integra-
tion with the other components is under development

Status and Workplan An initial Navigator component was developed as part of the Sce-
nario 2 demo for the year 2 review. This allowed for some testing of ideas and concepts
but it is envisaged that the final component will be substantially different to provide a wider
(not scenario orientated) access to the preserved items.

Documentation and Reference Links As the first full version of the component has not
yet been developed there is no available documentation. Documentation will appear in
D6.4 and D8.6 at the conclusion of the project.

License The license of the component will be determined once it has been developed
based upon the final list of contributing partners and the libraries used.

5.10 Context-aware Preservation Manager

Component Role The main objective for the CaPM component is to support the Preser-
vation Preparation and Re-activation workflows in the PoF Middleware solution by in-
creasing the ability for seamless integration between Active System and Preservation
System, to monitor change of ontologies by logging of logical and physical structures in
use by active systems, to monitor the use of file format for detection and computation
of format obsolescence issues, to support establishment of submission agreements that
interconnect Active System (information system) submissions with expected content and
metadata management procedures, to support matching of content submissions and re-
activation purposes to needs of digital preservation services, and to support management
of various physical package structures for seamless re-activation of content from Preser-
vation System to information system.

WP and Deliverables This component is developed within WP5, the contributing partners
are LTU, EURIX, IBM, DFKI and dkd. Deliverable D5.3 [ForgetIT, 2015e] describes some
basic capabilities and placement in the PoF Middleware workflows.

Integration and Deployment Integration and deployment for this component have not
been defined in detail yet. This component must be able to communicate with the other
middleware components, but also to collect information about content in the Active Sys-
tems and in the Preservation System (mainly in the cloud storage component).

API and I/O Formats The actual prototype implementation is not available yet, at the
moment of writing.

Status and Workplan The development of this component is still in progress: some pre-
liminary ideas about the implementation have been discussed so far. The work plan for
the third framework release is going to include the first implementation of this component
with support for basic functionalities integrated in the PoF Middleware. The plan includes

Page 52 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

implementation of logging and computation of content statistics, to support the use of sub-
mission agreements, and management of various logical and physical package structures
in Re-activation workflows. The component will leverage the messaging infrastructure to
asynchronously collect information about preservation processes or any other relevant
event used for triggering the appropriate processes.

Documentation and Reference Links A preliminary description of the Context-aware
Preservation Manager is available in deliverable D8.1 [ForgetIT, 2013d], where the role of
the component in the framework is described, and in deliverable D8.2 [ForgetIT, 2015g],
where the role of the component in the PoF Reference Model is explained. A preliminary
design of the prototype is described in deliverable D5.3 [ForgetIT, 2015e].

License The code of the Context-aware Preservation Manager will be released by LTU
as open source, the source code will be available in the ForgetIT SVN repository.

c© ForgetIT Page 53 (of 93)

ForgetIT Deliverable 8.4

6 Active Systems

In this Section we describe the current development of the two main user applications
developed and tested in the project, the Semantic Desktop for the personal preservation
and TYPO3 for the organizational preservation.

Both systems have been already described in detail in WP9 and WP10 deliverables, re-
spectively. In this document we summarize the main achievements for the integration with
the PoF Middleware.

Since the CMIS standard is crucial in our approach, we also describe how other user
applications (e.g. developed in the other WPs for demonstration purposes) can be seam-
lessly integrated with the framework using CMIS.

6.1 Semantic Desktop

The Personal Preservation Pilot I (see deliverable D9.3 [ForgetIT, 2015h]) uses the in-
tegration with the PoF Framework to provide services from ForgetIT. To realize this, the
following enhancements to the first release were accomplished in the pilot.

API and I/O Formats

Middleware services read contents of the PIMO using a CMIS compliant endpoint. This
endpoint has been updated in several respects. Especially, the information model used
here for transferring content to the PoF is one proposal for investigation for the future PoF
Information Model.

Every concept of PIMO can now be a CMIS document (see Figure 12): thus, every con-
cept can be fetched by the PoF Middleware allowing to perform preservation and restore
operations for every single PIMO entity. This allows also to preserve and restore con-
cepts without an explicit downloadable content such as persons or topics (in contrast to
resources such as images or text files).

Additional CMIS properties and CMIS relationships represent membership relations be-
tween container concepts and therein contained concepts. Therefore, a new CMIS docu-
ment type has been introduced: forgetit:collection. The specialty of the Semantic
Desktop as Active System motivated not to choose the available low-level types of the
CMIS model, namely cmis:folder:

The Semantic Desktop as Active System is based on a semantic graph knowledge rep-
resentation as data structure (for details see deliverable D9.3 [ForgetIT, 2015h]), there
are no folders. Furthermore, nodes of the graph can be connected virtually to anything
(e.g., as an is related-relationship is allowed between nodes). However, to point out the
adherence of resources to a collection, the forgetit:collection as CMIS document

Page 54 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

type is introduced together with the forgetit:containedIn CMIS relationship. The
relationship states the containment of a resource in a collection11.

As now forgetit:collection is more generic than cmis:folder it allows to circum-
vent the folder metaphor and implementation to transfer content to PoF.

ForgetIT collections (see Section 4) are now implemented in the CMIS endpoint (see Fig-
ure 25). They are realized as a special view on the PIMO model which is computed during
request time. This allows to store collection-like things in the PIMO such as projects or
photo collections (represented in the PIMO as pimo:LifeSituations), as discussed
below. Each collection can have contained documents which is represented using for-
getit:containedIn connecting a container document (source) with a contained doc-
ument (target).

Figure 25: Browsing a photo collection stored in the Semantic Desktop’s PIMO as
forgetit:collection using a CMIS client.

The PVs calculated by the Semantic Desktop on the PIMO for demonstration purposes
are provided by adding an additional document property forgetit:PV (this property is
also used in those scenarios where the PoF Middleware does the PV calculation).

To provide extensive metadata for a resource to be preserved, the context of an entity is
stored in the additional document property forgetit:context, which provides addi-
tional information about the resource to be preserved derived from the PIMO12.

Additional changes include an improved feedback about running or completed middleware
tasks such as succeeded or failed preservation which are reflected in the Semantic Desk-

11Using cmis:relationship is too general and would be up to an interpretation of the PoF that this
could mean contained in a collection and not, e.g., is annotated with or similar.

12For the example of an image, these would be annotated concepts, its (semantically enriched) text
written by the user, the collections it belongs to, etc.

c© ForgetIT Page 55 (of 93)

ForgetIT Deliverable 8.4

top UI, e.g., as notifications appearing on the main page, or status information if an image
is preserved or not. The use of PoF Middleware messaging capabilities avoids extensive
polling for status information and leads to better overall performance of the system.

Finally, access to the PoF Middleware, e.g., for triggering restore operations, has been
adapted to the changes made in the corresponding REST APIs.

License

Data exchange from the PIMO to the PoF Framework is done solely by means of the
standardized CMIS interface, so no proprietary API has to be exposed for interacting with
the Semantic Desktop.

pimo:LifeSituation

In the personal preservation use case, a customized CMIS Repository based on OpenCMIS
library is provided by the Semantic Desktop.

The PIMO allows to organize photos using a dedicated PIMO Photo App (see deliverable
D9.3 [ForgetIT, 2015h]). The Photo App uses the PIMO class pimo:LifeSituation13

to represent such a photo collection. This allows to annotate the collection as a whole as
well as individual photos (represented as pimo:Image) with with PIMO concepts, write
a (semantically enriched) text (using seed from WP4), and ratings of photos.

Each pimo:Image additionally contains data derived from the photos’ Exchangeable
Image File Format (EXIF) data if available (location, date), concepts with confidence value
detected by using image quality assessment from WP4, and finally, as a resource the
photo itself (as so-called grounding occurrence; for instance, this could be a URL pointing
to the file on a user’s desktop and/or locations in the PIMOCloud).

6.2 TYPO3

The Organizational Preservation Pilot Application V1 (see D10.2 [ForgetIT, 2015a]) uses
the CMIS standard to be able to provide content - originally restricted to use within TYPO3
only - to other systems, especially at this point the PoF Framework. Thus TYPO3 only
acts as a data-deliverer, exemplifying the point that any system supporting CMIS could act
as an Active System in the PoF Framework. TYPO3 is using an intermediary CMIS repos-
itory, as it is not providing a repository on its own. Relevant TYPO3 data structures are
transformed to the CMIS standard as following: the page tree consists of cmis:folder
objects and each content element on a page (text, image, video ...) is a cmis:document.
Assets connected to these content elements are created as an CMIS object, connected

13For a detailed discussion why it was called life situations (such as marriage, birth, holiday, etc.) and see
the prototype PIMORE in deliverable D9.2 [ForgetIT, 2014f].

Page 56 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

with a cmis:relationship. Each of these CMIS Objects can be registered in the PoF
Framework. The current communication consists of following parts:

Object Registration

After a new object was created, it is transferred to the CMIS repository. TYPO3 will receive
the CMIS ID of this element. This identifier is registered in the PoF Framework, which is
then able to access this object and pull required information. If the framework needs to
know the item’s relations, it can request all cmis:relations.

Meta-Data Enrichment

As any Active System could provide distinct meta information useful for PV and MB calcu-
lation, TYPO3 is exemplarily generating the following meta information set (exact values
to be changed) for each website page, split in two categories:
External Usage: visits count, average length of a user’s visit, bounce rate and incoming
link count
Internal Usage: creation/modified data, status changes (visibility etc.), edit history (edi-
tors, dates, ...), external references and internal references

The process to transfer this data to the PoF Framework is as following:

• Active System sends add meta data request to the PoF Framework containing the
CMIS ID and the meta data

• PoF Framework asks the CMIS for the exact type of this CMIS ID

• PoF Framework knows This object has this meta information based on the algorithm
generated by the PoF Framework before

• PoF Framework parses and saves the meta data

• PoF Framework calculates PV and MB, if more information is required, the CMIS
repository can be queried

Semantic Enrichment

Within TYPO3 authors can semantically enrich their documents, the full description of
the process will be in deliverable D10.3 [ForgetIT, 2015b]. The first step is the request
for possible annotations from an annotation source, at the moment a YODIE endpoint is
used. Additionally the user adds annotations by hand. The annotations are stored inline
in RDFa Lite format. Interested middleware components can easily extract these with the
provided developed GATE plugin.

c© ForgetIT Page 57 (of 93)

ForgetIT Deliverable 8.4

Archival and Restoration

For the moment only the manual archival is implemented in TYPO3. Before an object’s
deletion the PoF framework will receive an archive message, fetch the CMIS document
(based on a CMIS ID) and put it into the archive. When this archival process is finished
the document will be deleted from the CMIS repository.

When a document should be restored from the archive a restore request is sent to the PoF
Framework. The request contains the ID of the object in the archive and the destination
CMIS repository, where the PoF Framework will restore the object in.

6.3 CMIS-based User Applications

The adoption of CMIS standard for the bi-directional data exchange between the Active
Systems and the PoF Middleware enables the seamless integration of any user applica-
tion which supports CMIS for content publication. In the following we describe an example
of such application which has been implemented for the second release.

Photo Summarization

A user application has been developed to support users in the selection of personal pho-
tos for preservation (see deliverable D9.3 [ForgetIT, 2015h]). This application offers dif-
ferent methods that users can exploit to automatically select valuable photos from their
collections for subjecting them to special preservation activities without the requirement
of an existing Semantic Desktop. The photos selected from a given collection, along with
a set of metadata, are then stored into a publicly accessible CMIS server. This simplifies
the data exchange with the ForgetIT middleware, which can retrieve the selected photos
and preserve them into the ForgetIT archive.

Page 58 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

7 Preservation System

According to the current architecture diagram (see Figure 1), the Preservation System
is made up of two main components: the Digital Repository and the Preservation-aware
Storage System. In the following Sections we briefly summarize the main changes with
respect to the first release. Additional information about the implementation can be found
in deliverables D8.1 [ForgetIT, 2013d], D8.3 [ForgetIT, 2014e] and D7.3 [ForgetIT, 2014d].

7.1 Digital Repository

The Digital Repository is implemented using DSpace platform. For the second frame-
work release we updated the DSpace software to the last stable version 5.2. DSpace
source code is available as open source on Sourceforge [dsp, b] and GitHub [dsp, a], the
documentation is available on the project web site14. A customized installation guide for
DSpace was provided in D8.3. In order to enable the interaction between the PoF Middle-
ware and the DSpace repository, REST APIs for both the access and the ingest processes
have been implemented. The ingest interface is used to trigger operations related to the
SIP validation, its submission and the creation of the AIP. The access interface is used for
the dissemination of the AIP.

DSpace internal data model is represented in Figure 26. Digital objects are organized
into several layers such as Collections, Communities, Items, and Sites. This data model
supports the package structure defined in WP5 and the preliminary definition of the PoF
information model in D8.2. Currently, there is no direct mapping between the DSpace
collections and the ForgetIT collections described in Section 4 and Section 6, because
the work is still in progress (the collection information is stored in the CMIS metadata
only).

The last DSpace release provides a implementation of REST APIs15. The previous ver-
sions only provided READ interfaces, whilst the new release includes CRUD operations:
the creation of collections and items, the upload of resources (bitstreams) and metadata
or the retrieval of digital items can be performed using the REST APIs only. As a conse-
quence, it is now possible to register new items with only metadata and store the actual
files only in the cloud storage. This preservation scenario is currently under investigation
and will be evaluated and implemented for the third release, in parallel with the devel-
opment of the cloud storage (see next Section), with additional storlets implementing
preservation tasks.

For the second release we kept the same approach used for the first prototype, using
additional software to expose the Digital Repository REST APIs: this code, which will pre-
sumably be dropped for the final release, was necessary for previous DSpace releases,

14DSpace - http://www.dspace.org
15DSpace 5.x REST API: https://wiki.duraspace.org/display/DSDOC5x/REST+API

c© ForgetIT Page 59 (of 93)

ForgetIT Deliverable 8.4

Figure 26: DSpace data model diagram.

since as explained above the DSpace REST APIs available with a vanilla installation only
supported READ operations.

DSpace is compliant to Open Archival Information System (OAIS) model (see deliver-
able D8.1): the main OAIS functionalities such as Ingest, Access or Data Manage-
ment are implemented and the package exchange is inspired to the OAIS approach.
DSpace implements the repository packages as Submission Information Package (SIP),
Archival Information Package (AIP) and Dissemination Information Package (DIP) (see
[CCSDS, 2012]). The relationship between the PoF Reference Model and the OAIS
model is discussed in detail in deliverable D8.2 and will not be repeated here. From
an implementation point of view, we adopted OAIS terminology for the packages to be
compliant with DSpace.

The ingest and access endpoints exposed by the Preservation System are depicted in
Figure 27. The code is written in Java and is deployed in the main PoF Middleware
Java project, as part of the eu.forgetit.preservation.server package. The main
class is ServiceEndpoint, which contains JAX-RS annotated methods which are pub-
lished as REST APIs using Java Jersey. The server responses are provided in different

Page 60 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

formats (XML, JSON, etc.). The other classes depicted in Figure 27 are used for other
tasks required to interact with DSpace tools. The endpoint of the Preservation System
is used by the Archiver component and is configured in the DigitalRepositorySer-
viceConsumer class of the Archiver (see Section 5.6).

Figure 27: Class diagram for Preservation System endpoint, with associated classes.

7.2 Preservation-aware Storage System

The ForgetIT cloud-based Preservation-aware Storage system described in deliverable
D7.3 [ForgetIT, 2014d], serves as the backend storage for the ForgetIT Digital Repository
component. It is built on top of the OpenStack Swift object store, which is one of the top
open-source cloud projects [Baker, 2014]. Our cloud storage has computational abilities,
which come from a storlet engine that we have designed and implemented. The stor-
age computational abilities allow offloading of preservation functionalities to the storage.
Our cloud-storage also has metadata-search capabilities, which facilitate the retrieval of
preserved information.

Storlets are typically used to transform the data, filter the data, or analyze the data, all
in the object store. Storlets can also be used to automatically add metadata fields to
an object. In the integrated scenario presented during the second project review (see
Appendix B.2), a storlet is run during the upload of a UK parliament debate package,
to extract the date of the debate and the debate topics from the package, and inserts
them into the object metadata. Once the upload is completed, the object metadata auto-
matically becomes searchable. We demonstrated metadata searches based on the date
and topics. We have also demonstrated the use of storlets to extracts only the relevant
sections of the debate from the debate AIP package.

c© ForgetIT Page 61 (of 93)

ForgetIT Deliverable 8.4

The Digital Repository communicates with the cloud storage through a REST interface
(e.g. to upload or download an object). Storlet deployment is also done using the REST
interface. Storlet deployment is essentially uploading a storlet jar file to a designated
container in the Swift account. A storlet is a regular Swift object, but it must carry some
metadata used by the storlet engine. One of the main use cases for the use of storlets
in an archival information system is that of format transformations. This is needed, for
instance, when a file format has become obsolete.

The ForgetIT cloud storage stores not just the data of the preserved items it stores AIP
packages which contain both the data and the associated metadata. This means that the
transformation storlets, besides transforming the data, also need basic packaging abili-
ties. With LTU we defined and implemented the basic packaging functionalities that the
transformation storlets need to perform. These include computing the hash of the trans-
formed image, and adding a timestamp for the transformation. The transformation activity
also needs to be described and logged as part of the provenance of the object, since this
is an important aspect of maintaining the authenticity of the content [Rothenberg, 2000].

With TT, we showed how a combination of open-source tools can be used to monitor the
performance of a swift cluster. Monitoring of a swift cluster helps a swift administrator de-
tect problems in the entire cluster or in specific nodes. It helps the administrator guarantee
that the cluster meets the quality expectations of end users. We have also implemented
and tested heuristics to dispatch storlet computations based on storage-node utilization,
and showed that these heuristics lead to a better, and more consistent, user experience.

The storlet engine code has been open-sourced, and uploaded it to GitHub. We are also
trying to work with the Swift community on making the storlet engine part of the Swift
upstream. The license we have chosen for the storlet-engine code is Apache License
version 2.0, to conform to the OpenStack Swift license.

We are currently working to add storlet support for Static Large Objects (SLOs). SLOs
are a mechanism to overcome the 5GB Swift limit on objects, whereby a single ob-
ject is divided to several segments. We are also working to finalize the integration of
the preservation-aware storage system into the ForgetIT framework. This would entail,
among other things, finalizing the mechanism through which the storlet engine would
notify DSpace when AIP packages are transformed within the object store, for instance
following a format transformation.

Page 62 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

8 PoF Framework: Second Prototype Implementation

Information about software development, deployment and testing was already provided
for the first prototype implementation in Section 8.1 of deliverable D8.3 [ForgetIT, 2013d].

In the following we provide additional information mainly for the development of the PoF
Middleware and the RESTful server of the Digital Repository. For the implementation
of the Active Systems, the middleware internal components and the Preservation-aware
Storage System please refer to the related deliverables from other WPs.

The approach used for the second prototype was not changed for what concerns the
software development and deployment, although the interaction among all partners was
improved and the identification of the three scenarios described in Appendix B has driven
the implementation effort. For each scenario a leading partner was identified and a dedi-
cated team was established within the collaboration: each team worked on the assigned
scenario almost independently, with periodic check points to verify the overall status and
discuss common issues.

Software Development

For what concerns the development of the PoF Middleware and Preservation System,
two separate Java EE web projects have been created. Since the applications in the
framework are distributed, we use the Java Enterprise Edition (EE) framework and the
Eclipse Integrated Development Environment (IDE)16 bundle for Java EE Developers. The
version of Eclipse IDE used for the development is 4.4 (Luna), while for compilation we
upgraded the code to use Oracle Java JDK 8. The source code is available on project
SVN repository and Trac17) is used as issue tracking system. Apache Maven18 is used to
compile and build the Java projects.

Software Projects and Packages

The Java packages of both projects are briefly described in Table 8 and Table 9, while the
UML package diagrams are shown in Figure 28 and Figure 29. In both the Figures and
the Tables we omitted test packages (used mainly for unitary tests).

The UML packages in the model correspond exactly to the Java packages in both applica-
tions. Concerning the namespaces, the fully qualified names in the UML diagram based
on UML specification are converted using Java naming convention, so for example the
namespace for middleware::component sub-package corresponds in the Java code
to eu.forgetit.middleware.component.

16Eclipse - http://www.eclipse.org
17The Trac Project - http://trac.edgewall.org
18Apache Maven - http://maven.apache.org

c© ForgetIT Page 63 (of 93)

http://www.eclipse.org
http://trac.edgewall.org
http://maven.apache.org

ForgetIT Deliverable 8.4

Figure 28: UML package diagram for the PoF Middleware.

Figure 29: UML package diagram for the Preservation System.

Page 64 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Package Description
eu.forgetit.middleware Classes used by all other packages, to perform ba-

sic functions such as configuration and data manage-
ment. ConfigurationManager manages properties
for all components, for the broker and the workflows.
DataManager provides APIs for the persistence of data
in the middleware internal DB (e.g. IDs and tasks).

eu.forgetit.middleware.broker Auxiliary classes associated to messaging component, e.g.
to retrieve information shown in the GUI or for message log-
ging. This package is no more responsible for the message
exchange and routing, because this is implemented using
Spring framework: all instances of message producers and
consumers, the queues, the routes and the activation of the
components are managed by ActiveMQ and Camel.

eu.forgetit.middleware.component A class for each PoF Middleware component, implemented
as EJB and exposing public methods accepting and pro-
ducing Camel Exchange objects when consuming and
producing messages. The classes implement also private
methods for specific functionalities required for process-
ing information extracted from messages and for execut-
ing specific tasks. These classes often instantiate service
consumers in order to exchange information with external
services providing specific functionalities.

eu.forgetit.middleware.gui Auxiliary classes used by part of the middleware GUI,
mainly for what concerns the status of resources, the ID
mappings, the running tasks and the logging messages.
The classes in this package will be updated to be used in
the new middleware GUI based on hawtio.

eu.forgetit.middleware.model Two main classes, Collection and Item, to represent
collections and single items to be preserved. The sub-
packages contain auto-generated classes corresponding
to specific metadata schemas, such as METS and MODS,
which are used when preparing packages for preservation,
since such metadata formats are used in DSpace to repre-
sent archival objects and the associated descriptive meta-
data. Metadata classes have been automatically generated
from the schema files (XSD) by means of JAXB.

eu.forgetit.middleware.remote Classes implementing the Service Activator
pattern, used by the components to interact
with external (REST) services. Examples are
ExtractorServiceConsumer (external service for im-
age analysis) and ContextualizerServiceConsumer
(external contextualization service), as well as service
consumers for Digital Repository and cloud storage.

eu.forgetit.middleware.server Classes implementing the middleware REST APIs (Java
Jersey) and other support classes for specific tasks within
the REST server, such as listeners or filters.

eu.forgetit.middleware.utils Utilities used by the other packages, exposing mainly static
methods: for example tools to create compressed folders
or to obtain the MIME type of a given resource.

Table 8: Packages of the PoF Middleware project.

c© ForgetIT Page 65 (of 93)

ForgetIT Deliverable 8.4

Package Description
eu.forgetit.preservation Classes used by all other packages, to perform basic

functions such as configuration and data management.
ConfigurationManager manages the properties for all
components, such as the connection information about the
Digital Repository and cloud storage REST services.

eu.forgetit.preservation.component Two main classes, Packager and PackageValidator:
the former is responsible for importing packages in the Dig-
ital Repository, while the latter performs extra package val-
idation before ingest.

eu.forgetit.preservation.server Classes implementing the Preservation System REST
APIs (using Java Jersey). It also contains other support
classes for specific tasks within the REST server, such as
listeners or filters used during the REST requests. The Dig-
ital Repository uses the classes and methods in this pack-
age to process the ingest and access requests.

eu.forgetit.preservation.utils Utilities used by the other packages, for example tools to
manage different compressed archives or to validate the
MIME type of a given file. The classes in these package
mainly expose public static methods.

Table 9: Packages of the Preservation System projects.

Software Testing

In order to test the developed software for the PoF Middleware and the Preservation Sys-
tem, we performed unitary tests using JUnit19. Using appropriate plug-ins, JUnit tests
were executed within the Eclipse IDE during development, mainly for debugging pur-
poses, while a list of tests is defined in the Maven project configuration and executed
automatically during building. When generating the project artifacts (Java WAR files),
we use the default Maven configuration to resolve and retrieve third-party dependencies,
compile the source code, execute the unitary tests and package the compiled code in a
Java WAR file to be deployed in Apache Tomcat 820.

In order to test each component, we used dry run experiments. The components de-
veloped by other technical WPs have been tested by each partner separately, before
releasing them for integration. The interaction between the PoF Middleware and the other
components has been tested running different workflows. The end-to-end preservation
workflow was tested incrementally, mainly by adding new steps as soon as the required
input from previous steps was available. For certain steps it was necessary to use the
results of pre-processed data while the actual component was still under development
and could not be integrated in the workflow. For additional details see also D8.3.

19JUnit - http://junit.org
20Apache Tomcat - http://tomcat.apache.org

Page 66 (of 93) www.forgetit-project.eu

http://junit.org
http://tomcat.apache.org

Deliverable 8.4 ForgetIT

Software Deployment

For deployment we make use of virtualization: the different systems are running in the
testbed environment as virtual machines (VMs). The virtualization infrastructure is based
on KVM21, a full virtualization solution for Linux.

The two Active Systems are deployed in dedicated VMs: for TYPO3 CMS a Linux server
including also an instance of Alfresco (used for CMIS repository) is available; for the
Semantic Desktop a Linux VM for the PIMO Server and a Windows VM for the PIMO
Desktop are used (see Figure 1).

The two Java projects are deployed in separate instances of Tomcat 8, one running in the
PoF Middleware virtual machine and one in execution within the Preservation System VM.
For the PoF Middleware a Ubuntu Server VM is used to run the REST server, the broker
and the routing engine, as well as all the components deployed within the middleware
Apache Tomcat server.

For the Preservation System, a Ubuntu Server VM is used to run DSpace and the REST
server, while a dedicated VM is used for the cloud storage, running the Storlet Engine and
OpenStack Swift. Other VMs in the testbed provide additional services, such as a VPN
server, a FTP server and a name server.

Software Documentation

The documentation of the source code is automatically generated using Doxygen22 and
will be available on the project web site at the following URL:

http://www.forgetit-project.eu/en/project-results

An internal task force has been established within the project to publish the source code of
the PoF Framework on a public repository, presumably GitHub. This requires an additional
effort to clean up the source code, add APIs documentation, remove any dependency
from the specific testbed configuration and, above all, to identify the core components
for a minimal working system which can be released as open source and installed by
interested users.

The pre-compiled binaries for the framework components (web applications, executables,
libraries) as well as instructions for the installation and usage are provided by project
partners. When new versions of the framework components are released, they will be
updated on the repository. For detailed documentation about each component please
refer to WP8 deliverables and to deliverables provided by the corresponding WP.

The backbone of the middleware is based on Apache Foundation software, such as Ac-
tiveMQ and Camel. The third-party dependencies used to compile the two Java projects
are available on public Maven repositories and can be retrieved during compilation based

21KVM - http://www.linux-kvm.org
22Doxygen - http://www.doxygen.org

c© ForgetIT Page 67 (of 93)

http://www.forgetit-project.eu/en/project-results
http://www.linux-kvm.org
http://www.doxygen.org

ForgetIT Deliverable 8.4

on project configuration. A few executables (e.g. ffmpeg) are used for specific tasks. The
code has been developed and tested mainly for Linux (Ubuntu Server 64-bit), but since
the code is written in Java it can be virtually executed in any operating system where
a Java VM can be run. The executables written in other languages (e.g. C++) have to
be replaced with the corresponding versions for that particular operating system (if the
bundle is not available, they have a to be compiled from scratch).

Software Licensing

One of the goals of the ForgetIT project is to propose a new approach to digital preserva-
tion which can bridge the gap between information systems and preservation solutions.
Many initiatives and individuals in the digital preservation domain believe that only an
approach based on standards and open source technologies can produce valuable ben-
efit for the different stakeholders, resulting in several open source preservation systems,
which can be customized for specific requirements preventing vendor lock-in and the as-
sociated risk for the long term (see also deliverable D8.1 [ForgetIT, 2013d], which contains
an assessment of several open source digital preservation platforms).

Based on such ideas, the ForgetIT consortium agreed upon releasing under an open
source license the core components of the PoF Framework.

The exact license type is still under discussion and will be defined for the final prototype
release, described in deliverable D8.6 [ForgetIT, 2016b]. In parallel, project partners are
working on improving the source code quality and documentation to a level adequate for
dissemination on a public repository. This task is still in progress at the moment of writing.
It is worth noting that the core libraries for the implementation of the PoF Middleware are
already available under the Apache license and that several components developed within
the project will be released as open source, as described in the previous Sections. Any
additional code developed to implement the PoF Middleware will be available as open
source, as well. The backbone of the PoF Middleware infrastructure is based on Apache
ServiceMix components, which are available as open source.

Concerning the Preservation System, the Digital Repository is based on DSpace (avail-
able under the BSD license), while the licensing mechanism adopted by IBM for the Storlet
Engine is still under evaluation at the moment of writing, although an open source license
for the core part of the Storlet Engine is foreseen (Openstack Swift is already available as
open source). Part of the effort for the cloud storage software is devoted to the proposal
of including the Storlet Engine code in the OpenStack Swift mainstream development. A
preliminary proposal has been submitted to the OpenStack community.

Concerning the Active Systems, TYPO3 is already available as open source, the licensing
of additional customization is still under evaluation, while the Semantic Desktop will be
available as open source.

A task force has been established in the project, to evaluate candidate open source li-
censes, taking into account third party dependencies used by the different components.

Page 68 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

9 Conclusions

9.1 Summary

The document provides a description of the second release of the PoF Framework which
was demonstrated at the second annual project review. The updated prototype with all
integrated components has been discussed. The software prototype reported in this doc-
ument is the result of the effort performed by all partners during the second year of the
project. Two workflows from the first release of the PoF Reference Model have driven the
prototype implementation and several demos, associated to three main scenarios, have
been presented.

In the following Sections we briefly discuss the assessment of the results presented here
according to the WP8 performance indicators and then describe the plan for future work.

9.2 Assessment of Performance Indicators

The expected WP8 outcomes, reported in the project proposal, are:

• the Preserve-or-Forget (PoF) Reference Model

• the PoF Framework

The second framework prototype refers to the second expected outcome, for which the
following performance indicators have been identified in the project proposal:

1. availability of interfaces and protocols exposed/published by software components
to be integrated and delivered by technical work packages,

2. adequateness and effectiveness of the defined integration approach and strategy
for the occurring integration tasks,

3. availability of infrastructure facilities for managing the development of the software
framework (e.g. versioning system, software repository).

The prototype described here represents the second release of the PoF Framework. The
results achieved so far are compatible with the expected progress and success indicators
for WP8, although further development is required for the final framework release, as
described below.

Indicator 1: APIs and protocols

The achievements for the first prototype already satisfied this indicator, similar consider-
ations are reported here for the second prototype. The APIs and protocols of the compo-
nents to be integrated have been tested, the second prototype integrates the components

c© ForgetIT Page 69 (of 93)

ForgetIT Deliverable 8.4

according to the integration plan in D8.1. The APIs published by the PoF Middleware
and the Preservation System (Digital Repository and Preservation-aware Storage Sys-
tem) are based on REST architectural style, hence different HTTP verbs are used to get
and send data. The REST APIs have been implemented using Java reference software,
to maximize integration with all external systems. Concerning the protocols, CMIS is used
to retrieve resources and metadata from Active Systems. CMIS is a open standard pro-
tocol aimed to support interoperability and is widely adopted and supported. CMIS is
also used to bring re-activated content back to use, since also the PoF Middleware pub-
lishes the re-activated content using its own CMIS repository. As a consequence, any
user application supporting CMIS can be seamlessly integrated with the PoF Framework.
Moreover, standard formats have been used for content packaging (XML-based formats
such as METS, Dublin Core, PREMIS) and for communication with web services (XML or
JSON).

Indicator 2: integration approach

The integration approach has been established during the first year of project and is still
valid. We leverage the best practices in Enterprise Application Integration (EAI), adopting
well established concepts such as the Enterprise Service Bus (ESB) for the communica-
tion layer and Enterprise Integration Patterns (EIP) as industry level standard for complex
integration patterns. Apache Camel, used for the message routing, implements all EIPs
available in the literature, examples have been provided in the text and the benefits of
such approach have also been discussed. The PoF Middleware is implemented as a
Message Oriented Middleware (MOM), this approach has been further validated in the
second year with the integration of additional components in the implementation of the
new workflows defined in the PoF Reference Model.

A preliminary integration plan is summarized in Table 15 of deliverable D8.1, where we
split the components in four categories and assigned an expected integration level for
each framework release. For what concerns the Active Systems, the integration mech-
anism with the PoF is in lace, according to the plan, although additional workflows will
be implemented in the third release, which require further integration effort. Concerning
the middleware shared components, compared to the plan, we have almost completed
the Metadata Repository implementation, while only the design and a early prototype is
available for the Context-aware Preservation Manager. Concerning the middleware core
components and the Preservation System, the current status is almost compliant to the
plan: one exception to the plan is represented by the Contextualizer, which requires fur-
ther development, while the Condensator service has been fully integrated. Based on
such considerations, we can estimate that 9 of 14 components are now fully integrated
and further development on such components will not affect their integration, while 4 com-
ponents (Forgettor, Navigator, Contextualizer and Metadata Repository) have been only
partially integrated, mainly due to their development status, and 1 component (Context-
aware Preservation Manager) requires further development before integration. The afore-
mentioned integration plan is constantly discussed and monitored withing the consortium
by means of face-to-face meeting and periodic conference call, and pppropriate actions

Page 70 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

have been taken to complete the development and integration of all components on time
for the final framework release.

Indicator 3: development and test infrastructure

The testbed environment has been setup during the first year and is still accessible to all
partners. The virtualization environment and the code versioning system (SVN) is main-
tained by EURIX. An issue tracking system (Trac) is used to keep track of all open issues
identified during project meetings and periodic conference calls. It is used for ticketing, as
well as to define milestones for the development (software releases, deadlines , etc.) and
to share information about exceptions and errors. Each ticket is assigned to the appro-
priate partner. Progress for each milestone and deadline can be monitored, taking into
account open tickets. The approach adopted for software development is based on Agile
methodology, using UML for sharing ideas and to describe software components, from
preliminary sketches to complex modules. Only a minimal amount of documents is cre-
ated and shared during the development phase, using the project wiki or other systems
in the cloud (e.g. Google Drive) to prepare short technical notes and guidelines focusing
on specific issues.

9.2.1 Evaluation of the PoF Framework

The evaluation of the framework has not been completed, yet. This is still under discus-
sion within the consortium, to define a complete evaluation plan when all components will
be developed and integrated in the framework and all workflows defined in the reference
model will be implemented. This is planned for the third framework release and will be
included in deliverable D8.6 [ForgetIT, 2016b].

Nevertheless, many components have already been tested individually within the cor-
responding WP. Many components leverage third party software tools that are actively
maintained and tested by large open source communities. The backbone of the middle-
ware infrastructure is based on Apache ServiceMix framework, which has been adopted
in several open source and commercial products.

The two pilot applications will be tested again in the next months, a detailed plan is under
preparation within WP2.

9.3 Next Steps

The workplan for the third framework release has been defined after the second year
review, taking into account review recommendations. The primary focus for the third year
is to fully support the PoF Reference Model (both the workflows for the functional part and
the information model). The second release implements only two workflows defined in the

c© ForgetIT Page 71 (of 93)

ForgetIT Deliverable 8.4

Core and Remember & Forget layers of the model: the missing workflows associated to
the Evolution layer will be implemented, too. New releases of the existing components will
be available for integration, but some effort will be used to integrate the new components
such as the Context-aware Preservation Manager. No major updates are expected for
the middleware infrastructure, but the Preservation System will be further developed: for
example a better implementation of the preservation strategies for the long-term will be
one of the main challenges. Finally, the evaluation of the final framework release will be
performed, to validate the results of the project. A discussion among all partners to define
the assessment criteria and methodology for all developed components has been started.

Page 72 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

10 References

[dsp, a] DSpace GitHub Repository. https://github.com/DSpace/DSpace. Re-
trieved 31 July 2014.

[dsp, b] DSpace SourceForge Repository. https://sourceforge.net/projects/
dspace/files. Retrieved 31 July 2014.

[gat,] General Architecture for Text Engineering (GATE). https://gate.ac.uk. Re-
trieved 30 June 2015.

[obj, 2015] (2015). ObjectDB - Fast Object Database for Java. http://www.
objectdb.com. Retrieved 30 June 2015.

[Baker, 2014] Baker, J. (2014). Survey Says: Openstack and Docker Top Cloud Projects.
http://opensource.com/business/14/8/openstack-and-docker-top-cloud-projects. Re-
trieved 30 June 2015.

[CCSDS, 2012] CCSDS (2012). Reference Model for an Open Archival Informa-
tion System (OAIS) - recommended practice, ccsds 650.0-m-2 (magenta book) is-
sue 2. also available as iso standard 14721:2012. http://public.ccsds.org/
publications/archive/650x0m2.pdf. Retrieved 29 August 2014.

[Chappell, 2004] Chappell, D. (2004). Enterprise service bus. O’Reilly Media, Inc.

[Cunningham et al., 2011] Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T.,
Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text Process-
ing with GATE (Version 6).

[DAI and ZHU, 2010] DAI, J. and ZHU, X.-M. (2010). Design and implementation of an
asynchronous message bus based on activemq. Computer Systems & Applications,
8:062.

[ForgetIT, 2013a] ForgetIT (2013a). Deliverable D3.1: Report on Foundations of Man-
aged Forgetting.

[ForgetIT, 2013b] ForgetIT (2013b). Deliverable D4.1: Information Analysis, Consolida-
tion and Concentration for Preservation – State of the Art and Approach.

[ForgetIT, 2013c] ForgetIT (2013c). Deliverable D5.1: Foundations of Synergetic Preser-
vation.

[ForgetIT, 2013d] ForgetIT (2013d). Deliverable D8.1: Integration Plan and Architectural
Approach.

[ForgetIT, 2014a] ForgetIT (2014a). Deliverable D3.2: Components for Managed Forget-
ting – First Release.

c© ForgetIT Page 73 (of 93)

https://github.com/DSpace/DSpace
https://sourceforge.net/projects/dspace/files
https://sourceforge.net/projects/dspace/files
https://gate.ac.uk
http://www.objectdb.com
http://www.objectdb.com
http://public.ccsds.org/publications/archive/650x0m2.pdf
http://public.ccsds.org/publications/archive/650x0m2.pdf

ForgetIT Deliverable 8.4

[ForgetIT, 2014b] ForgetIT (2014b). Deliverable D4.2: Information Analysis, Consolida-
tion and Concentration Techniques, and Evaluation – First Release.

[ForgetIT, 2014c] ForgetIT (2014c). Deliverable D5.2: Workflow Model and Prototype for
Transition between Active System and AIS.

[ForgetIT, 2014d] ForgetIT (2014d). Deliverable D7.3: Computational Storage Services –
Second Release.

[ForgetIT, 2014e] ForgetIT (2014e). Deliverable D8.3: Preserve-or-Forget Framework –
First Release.

[ForgetIT, 2014f] ForgetIT (2014f). Deliverable D9.2: Use Cases & Mock-up Develop-
ment.

[ForgetIT, 2015a] ForgetIT (2015a). Deliverable D10.2: Organizational Preservation Pilot
Application V1.

[ForgetIT, 2015b] ForgetIT (2015b). Deliverable D10.3: Organizational Preservation Pilot
Application V2.

[ForgetIT, 2015c] ForgetIT (2015c). Deliverable D3.3: Strategies and Components for
Managed Forgetting – Second Release.

[ForgetIT, 2015d] ForgetIT (2015d). Deliverable D4.3: Information Analysis, Consolida-
tion and Concentration Techniques, and Evaluation – Second Release.

[ForgetIT, 2015e] ForgetIT (2015e). Deliverable D5.3: Workflow Model and Prototype for
Transition between Active System and AIS – Second Release.

[ForgetIT, 2015f] ForgetIT (2015f). Deliverable D6.3: Contextualisation Tools – Second
Release.

[ForgetIT, 2015g] ForgetIT (2015g). Deliverable D8.2: Preserve-or-Forget Reference
Model – Initial Model.

[ForgetIT, 2015h] ForgetIT (2015h). Deliverable D9.3: Personal Preservation Pilot I –
Concise Preserving Personal Desktop.

[ForgetIT, 2016a] ForgetIT (2016a). Deliverable D6.4: Contextualisation framework and
evaluation.

[ForgetIT, 2016b] ForgetIT (2016b). Deliverable D8.6: Preserve-or-Forget Framework –
Final Release.

[Gorrell et al., 2015] Gorrell, G., Petrak, J., and Bontcheva, K. (2015). Using@ twitter
conventions to improve# lod-based named entity disambiguation. In The Semantic
Web. Latest Advances and New Domains, pages 171–186. Springer.

Page 74 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

[Henjes et al., 2007] Henjes, R., Schlosser, D., Menth, M., and Himmler, V. (2007).
Throughput performance of the activemq jms server. In Kommunikation in Verteilten
Systemen (KiVS), pages 113–124. Springer.

[Hohpe and Woolf, 2003] Hohpe, G. and Woolf, B. (2003). Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

[Ibsen and Anstey, 2010] Ibsen, C. and Anstey, J. (2010). Camel in Action. Manning
Publications Co., Greenwich, CT, USA, 1st edition.

[OASIS, 2013] OASIS (2013). Content Management Interoperability Services (CMIS)
Version 1.1. OASIS Standard. http://docs.oasis-open.org/cmis/CMIS/v1.
1/CMIS-v1.1.html. Retrieved 30 June 2015.

[Rothenberg, 2000] Rothenberg, J. (2000). Preserving authentic digital information. In
Authenticity in a digital environment, pages 51–68. CLIR.

[Snyder et al., 2011] Snyder, B., Bosanac, D., and Davies, R. (2011). ActiveMQ in Action.
Manning Publications Co., Greenwich, CT, USA.

c© ForgetIT Page 75 (of 93)

http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html

ForgetIT Deliverable 8.4

Glossary

AIP Archival Information Package. 59–62

CMIS Content Management Interoperability Services. 3, 7, 9–11, 17, 23–29, 31, 32,
34–36, 44, 46, 54–59, 67, 71, 88

CRUD Create Read Update Delete. 34, 36–38, 59

DIP Dissemination Information Package. 45, 60

EAI Enterprise Application Integration. 19, 71

EIP Enterprise Integration Patterns. 7, 19–21, 40, 43, 50, 71

EJB Enterprise JavaBeans. 34, 36, 38, 65

ESB Enterprise Service Bus. 7, 11, 17, 20, 21, 45, 71

EXIF Exchangeable Image File Format. 56

IDE Integrated Development Environment. 63, 66

JMS Java Message Service. 21

JSON JavaScript Object Notation. 22, 23, 36, 38, 61, 71, 85, 93

MB Memory Buoyancy. 9, 35, 47–49, 57, 93

MOM Message Oriented Middleware. 7, 11, 17–19, 21, 71

OAIS Open Archival Information System. 60

PIMO Personal Information MOdel. 25, 48, 49, 54–56, 67, 91

PoF Preserve-or-Forget. 1, 3, 7–11, 13–17, 19, 21–26, 31, 33, 35, 37–39, 45, 46, 49–60,
63, 65–68, 70–72, 79, 89, 91

PV Preservation Value. 10, 23, 25, 26, 28, 33, 35, 36, 39, 47–49, 55, 57

SIP Submission Information Package. 44, 46, 59, 60

UML Unified Modeling Language. 11, 63, 72

UUID Universally Unique IDentifier. 34

XML eXtensible Markup Language. 21–23, 34, 36, 38, 39, 41, 43, 46, 61, 71, 78–81, 83

Page 76 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

A Middleware Configuration and Administration

In the following we provide additional examples about the actual configuration of the mid-
dleware, for what concerns the broker, the routing engine and the internal components.
We also provide some screenshots from the new administrative web console implemented
for the second release.

Scheduler Message Routing

An example taken from the middleware source code is shown in Listing 1, where the
Scheduler message route is defined using Spring XML and Apache Camel. In the next
paragraph we show other configured routes and the full Camel configuration file.

Based on the value of different headers for the incoming message, a specific logic is
implemented: for example based on the request (Task type), the two main workflows
are executed. The from element defines a message endpoint to consume messages
from, while the Message Router pattern is implemented using the choice and when
elements. The bean tag is used to invoke operations on specific Spring beans, which
are Java classes instantiated at boot time. Finally, the to element defines a message
destination. For the Scheduler route, these destinations are associated to other routes
and can trigger other processes.

Listing 1: Scheduler route definition
<rou te i d = ” schedulerRoute ”>

<from u r i = ” activemq:queue:SCHEDULER .QUEUE” />

<choice>

<when>
<simple>${ i n . header . taskSta tus } == ’COMPLETED ’< / s imple>
<bean r e f = ” scheduler ” method= ” closeTask ” />
<to u r i = ” activemq:queue:LOG .QUEUE” />

< / when>

<when>
<simple>${ i n . header . taskSta tus } == ’ FAILED ’< / s imple>
<bean r e f = ” scheduler ” method= ” closeTask (${ i n . header . t ask Id }) ” />
<to u r i = ” activemq:queue:ERROR .QUEUE” />

< / when>

<otherwise>
<when>

<simple>${ i n . header . taskType} == ’PRESERVATION ’< / s imple>
<bean r e f = ” scheduler ” method= ” parseResources ” />
<to u r i = ” activemq:queue:LOG .QUEUE” />

< / when>
<when>

<simple>${ i n . header . taskType} == ’REACTIVATION ’< / s imple>

c© ForgetIT Page 77 (of 93)

ForgetIT Deliverable 8.4

<to u r i = ” activemq:queue:REACTIVATION .QUEUE” />
<to u r i = ” activemq:queue:LOG .QUEUE” />

< / when>
< / o therwise>

< / choice>

< / rou te>

Middleware Configuration

In the following we provide two sample configuration files for the messaging system and
the routing engine in the PoF Middleware. Both examples make use of Spring XML frame-
work.

A sample ActiveMQ configuration is shown in Listing 2. The broker configuration (name,
ports, protocols) and the connection factory are provided, they are both instantiated at
start time when the PoF Middleware server running in Apache Tomcat is started. The
queues and the topics are defined providing just the name (with topics each message is
sent to all subscribers, with queues each message is sent to a single consumer). Finally,
all middleware components are defined as Spring beans, therefore their instances are
created and maintained over time by the Spring framework.

Listing 2: ActiveMQ configuration with Spring XML
<broker i d = ” broker ” brokerName= ” pofBroker ” useShutdownHook= ” f a l s e ”

useJmx= ” t rue ” p e r s i s t e n t = ” t r ue ” da taD i rec to ry = ” activemq−data ”
xmlns= ” h t t p : / / activemq . apache . org / schema / core ”>

<t ranspor tConnectors>
<t ranspor tConnector name= ”vm” u r i = ” vm: / / pofBroker ” />
<t ranspor tConnector name= ” tcp ” u r i = ” t c p : / / 0 . 0 . 0 . 0 :61616 ” />

< / t ranspor tConnectors>
< / broker>

<bean i d = ” pooledConnect ionFactory ”
c lass= ” org . apache . activemq . pool . PooledConnect ionFactory ”
destroy−method= ” stop ”>

<proper ty name= ” connect ionFactory ”>
<bean c lass= ” org . apache . activemq . ActiveMQConnectionFactory ”>

<proper ty name= ” brokerURL ” value= ” vm: / / pofBroker ” />
< / bean>

< / p roper ty>
< / bean>

<bean i d = ” scheduler . queue ”
c lass= ” org . apache . activemq .command . ActiveMQQueue ”>

<cons t ruc to r−arg value= ”SCHEDULER.QUEUE” />
< / bean>

<bean i d = ” p rese rva t i on . queue ”
c lass= ” org . apache . activemq .command . ActiveMQQueue ”>

Page 78 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

<cons t ruc to r−arg value= ”PRESERVATION.QUEUE” />
< / bean>
<bean i d = ” create . c o l l e c t i o n . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”CREATE.COLLECTION.QUEUE” />

< / bean>
<bean i d = ” image . ana lys i s . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”IMAGE. ANALYSIS .QUEUE” />

< / bean>
<bean i d = ” log . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”LOG.QUEUE” />

< / bean>
<bean i d = ” t e s t . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”TEST.QUEUE” />

< / bean>
<bean i d = ” e r r o r . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”ERROR.QUEUE” />

< / bean>
<bean i d = ” dead . end . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”DEAD.END.QUEUE” />

< / bean>

<bean i d = ” r e a c t i v a t i o n . n o t i f i c a t i o n . t o p i c ”
c lass= ” org . apache . activemq .command . ActiveMQTopic ”>

<cons t ruc to r−arg value= ”REACTIVATION . NOTIFICATION . TOPIC” />
< / bean>
<bean i d = ” p rese rva t i on . n o t i f i c a t i o n . t o p i c ”

c lass= ” org . apache . activemq .command . ActiveMQTopic ”>
<cons t ruc to r−arg value= ”PRESERVATION. NOTIFICATION . TOPIC” />

< / bean>

<bean i d = ” scheduler ” c lass= ” eu . f o r g e t i t . middleware . component . Scheduler ” />
<bean i d = ” idManager ” c lass= ” eu . f o r g e t i t . middleware . component . IDManager ” />
<bean i d = ” c o l l e c t o r ” c lass= ” eu . f o r g e t i t . middleware . component . C o l l e c t o r ” />
<bean i d = ” e x t r a c t o r ” c lass= ” eu . f o r g e t i t . middleware . component . E x t r a c t o r ” />
<bean i d = ” c o n t e x t u a l i z e r ”

c lass= ” eu . f o r g e t i t . middleware . component . Con tex tua l i ze r ” />
<bean i d = ” a r ch i ve r ” c lass= ” eu . f o r g e t i t . middleware . component . Arch ive r ” />
<bean i d = ” condensator ” c lass= ” eu . f o r g e t i t . middleware . component . Condensator ” />
<bean i d = ” f o r g e t t o r ” c lass= ” eu . f o r g e t i t . middleware . component . Fo rge t t o r ” />
<bean i d = ” logger ” c lass= ” eu . f o r g e t i t . middleware . broker . MessageLogging ” />

The configuration of Apache Camel using Spring XML is straightforward. An example of
message route for the Scheduler is shown above. In Listing 3 we provide an excerpt of a
sample configuration which defines the messaging broker and the route for two workflows:
preservation preparation and re-activation. Each workflow is represented as a sequence
of steps associated to specific Spring beans corresponding to the middleware compo-
nents. During a given step, the method of the Java class defined in the configuration is

c© ForgetIT Page 79 (of 93)

ForgetIT Deliverable 8.4

invoked. The Spring XML representation is associated to different patterns and defines a
language for implementing specific rules associated to the messages.

Listing 3: Apache Camel configuration
<bean i d = ” activemq ”

c lass= ” org . apache . activemq . camel . component . ActiveMQComponent ”>
<proper ty name= ” brokerURL ” value= ” vm: / / pofBroker ” />

< / bean>

<camelContext xmlns= ” h t t p : / / camel . apache . org / schema / spr ing ”>

<onException>
<except ion>eu . f o r g e t i t . middleware . Workf lowException< / except ion>
<r e d e l i v e r y P o l i c y maximumRedeliveries= ” 2 ” />
<to u r i = ” activemq:queue:ERROR .QUEUE” />

< / onException>

<rou te i d = ” schedulerRoute ”>
< !−− OMITTED, SEE ABOVE −−>

< / rou te>

<rou te i d = ” preservat ionRoute ”>
<from u r i = ” activemq:queue:PRESERVATION .QUEUE” />
<setHeader headerName= ” taskSta tus ”>

<constant>RUNNING< / constant>
< / setHeader>

<bean r e f = ” idManager ” method= ” generateID ” />
<bean r e f = ” c o l l e c t o r ” method= ” getResources ” />
<removeHeaders pa t t e rn = ” iamUserID ” />
<setHeader headerName= ” iamType ”>

<constant>ALL< / constant>
< / setHeader>
<bean r e f = ” e x t r a c t o r ” method= ” imageAnalysis ” />
<bean r e f = ” c o n t e x t u a l i z e r ” method= ” c o n t e x t u a l i z e ” />
<setHeader headerName= ” minCluster ingImages ”>

<constant>10< / constant>
< / setHeader>
<bean r e f = ” condensator ” method= ” imageCluster ing ” />
<bean r e f = ” a r ch i ve r ” method= ” createPackage ” />
<bean r e f = ” a r ch i ve r ” method= ” ingestSIP ” />
<bean r e f = ” a r ch i ve r ” method= ” exportAIP ” />
<bean r e f = ” a r ch i ve r ” method= ” storeAIP ” />
<setHeader headerName= ” taskSta tus ”>

<constant>COMPLETED< / constant>
< / setHeader>
<m u l t i c a s t>

<to u r i = ” activemq:topic:PRESERVATION . NOTIFICATION . TOPIC” />
<to u r i = ” activemq:queue:SCHEDULER .QUEUE” />

< / m u l t i c a s t>

< / rou te>

<rou te i d = ” reAc t i va t ionRou te ”>
<from u r i = ” activemq:queue:REACTIVATION .QUEUE” />

Page 80 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

<setHeader headerName= ” taskSta tus ”>
<constant>RUNNING< / constant>

< / setHeader>
<bean r e f = ” a r ch i ve r ” method= ” reac t i va teA IP ” />
<bean r e f = ” c o l l e c t o r ” method= ” res to re ” />
<setHeader headerName= ” taskSta tus ”>

<constant>COMPLETED< / constant>
< / setHeader>
<m u l t i c a s t>

<to u r i = ” activemq:topic:REACTIVATION . NOTIFICATION . TOPIC” />
<to u r i = ” activemq:queue:SCHEDULER .QUEUE” />

< / m u l t i c a s t>
< / rou te>

<rou te i d = ” per iod icSchedulerRoute ”>
<from u r i = ” t i m e r : p o f ?per iod =600s& delay=180s ” />
<t rans form>

<simple>
Scheduler Test Routing Message − ${date:now:yyyy−MM−dd HH:mm:ss}

< / s imple>
< / t rans form>
<setHeader headerName= ” taskSta tus ”>

<constant>COMPLETED< / constant>
< / setHeader>
<to u r i = ” activemq:queue:SCHEDULER .QUEUE” />

< / rou te>

<rou te i d = ” errorRoute ”>
<from u r i = ” activemq:queue:ERROR .QUEUE” />
<to u r i = ” activemq:queue:SCHEDULER .QUEUE” />

< / rou te>

< / camelContext>

The flow control makes use of message headers: setting the header of an incoming mes-
sage to a given value, can influence the way the message is processed by the other
components. The multicast element (in opposition to the splitter) and the trans-
form element are used to implement other patterns (see [Hohpe and Woolf, 2003]). It is
worth noting that the code exceptions and any error during the workflow execution are
properly handled: the error messages are sent to the Scheduler to be processed and to
a dedicated error queue used for monitoring.

Finally, a route executing periodic tasks is also shown: currently this is just used to send
heartbeat messages, scheduled every 10 minutes, but for the future this mechanism could
be used to implement periodic tasks associated to preservation or to monitor specific
information associated to the content and trigger some pre-defined processes.

c© ForgetIT Page 81 (of 93)

ForgetIT Deliverable 8.4

PoF Middleware Web Console

The monitoring interface for the messaging system and the routing engine is based on
hawtio23, a web monitoring console based on HTML5 that integrates seamlessly with
ActiveMQ and Camel: this graphical console replaces the old ActiveMQ GUI and is mul-
tipurpose.

The flow of messages in the different queues, updated in real time during workflow exe-
cution, is shown in Figure 11 in Section 4.

Additional screenshots of the hawtio console for the middleware instance running in the
testbed are shown in the following Figures: the status of queues and messages in the
broker (Figure 30); the processes and threads running in the broker ((Figure 31); the
routes defined in Camel using Spring XML, described before (Figure 32); .

Figure 30: Message queues monitoring.

23hawtio - http://hawt.io

Page 82 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Figure 31: Process monitoring.

Figure 32: Routes monitoring.

c© ForgetIT Page 83 (of 93)

ForgetIT Deliverable 8.4

Extractor

In the following, an excerpt of Java code take from the Extractor component is shown:
the method for image analysis used in the Apache Camel route defined above makes
use of Exchange class, which is part of the Camel APIs and contains the message
information (header and body). The message header is typically used to share high-
level information required for flow control, while the message body contains the data. In
the current implementation, we use JSON format to represent message content. After
processing the message, extracting information and obtaining some results, the message
body and header can be updated and then passed to the flow control wrapped in the
Exchange object. Following the asynchronous message approach, the next destination
of the message is unknown to the Extractor class, the new message is sent to one of
the instances of the next component in the flow using the route definition (in the example
above, it is the Contextualizer component).

Listing 4: Component methods for messages
package eu . f o r g e t i t . middleware . component ;

. . .
import org . apache . camel . Exchange ;
. . .
import eu . f o r g e t i t . middleware . component . Scheduler . TaskStatus ;

public class E x t r a c t o r {

. . .

@BeanInject
private Scheduler scheduler ;

. . .

public void imageAnalysis (Exchange exchange){

. . .

Map<St r ing , Object> headers = MessageTools . getHeaders (exchange) ;

S t r i n g task Id = (S t r i n g) headers . get (” t ask Id ”) ;
scheduler . setTaskStatus (task Id , TaskStatus .RUNNING) ;
scheduler . setTaskLastStep (task Id , ” IMAGE ANALYSIS”) ;
LocalDateTime lastDateTime = LocalDateTime . now () ;
scheduler . setTaskLastDateTime (lastDateTime) ;

exchange . ge t In () . setHeaders (headers) ;

S t r i n g iamType = (S t r i n g) headers . get (” iamType ”) ;

. . .

JsonObject jsonBody = MessageTools . getBodyAsJSON (exchange) ;

Page 84 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

i f (jsonBody != nul l){

/ / processing message body (JSON format)
/ / new r e s u l t s are appended to the body

exchange . ge t In () . setBody (jsonBody . t o S t r i n g ()) ;

} else {

headers . put (” taskSta tus ” , TaskStatus . FAILED . t o S t r i n g ()) ;
exchange . ge t In () . setHeaders (headers) ;

}

}

c© ForgetIT Page 85 (of 93)

ForgetIT Deliverable 8.4

B Scenarios for the Second Prototype Demonstrations

In the following Sections we present three representative scenarios that have been show-
cased during the second project review. With respect to the demonstrations after the first
year (based on the first prototype), where the focus was on showing an integrated end-
to-end preservation workflow to validate the ForgetIT approach and on demonstrating
the main technologies available in the project, for the second release we identified some
scenarios for both the personal and organizational preservation which could benefit from
new components and an improved integration framework.

Scenarios 1 and 3 are part of the personal preservation use-case, while scenario 2 is
associated to the organizational preservation use-case.

B.1 Scenario 1: Incremental Photo Preservation

Scenario 1 regards the problem of supporting users in selecting important photos for
preservation from their own collections. We have developed a desktop application (see
Figure 33) where the user can browse her own collections and apply automatic methods to
make selections and create summaries for preservation. Differently from scenario 3 (see
Section B.3), we do not assume the presence of any semantic metadata or annotation
provided by the user. In order to keep personal preferences into account, the user can
revise the selection done automatically before preserving the photos. Such feedback is
used to update the selection model, which can adapt to the preferences of the user.

The main goals of the scenario are the following:

• Providing a structured browsing of photo collections, where the structure is deter-
mined via event clustering

• Suggesting sub sets of important photos for preservation and future revisiting

The high-level overview of scenario 1 is depicted in Figure 34. The desktop application
has been developed by ARGELA, within the context of WP9. The input photo collection
is sent to the Extractor developed by CERTH (Section 5.4), which processes the photos
and extracts information such as clusters, quality, concepts, near-duplicates, and faces.
This information is returned to the ARGELA application and sent to the components that
the user has selected to perform a selection (Selector) or a summary (Summarizer). The
main difference between these methods is that the Selector component is trained to meet
user expectations, i.e. produces selections that are as close as possible to those that
the user would have selected by themselves, while the Summarizer component produces
a balanced summary of the collection by picking one or more representatives from each
sub-event (cluster). The Selector (implemented by LUH within WP3) and the Summarizer
(implemented by CERTH within WP4) are part of the Forgettor component (Section 5.7)
and Condensator component (Section 5.5) respectively, and they have been described in
more detail in deliverables D3.3 [ForgetIT, 2015c] and D4.3 [ForgetIT, 2015d].

Page 86 (of 93) www.forgetit-project.eu

Deliverable 8.4 ForgetIT

Figure 33: Screenshot of the desktop application developed within scenario 1.

Once the selection or summary has been created and sent to the desktop application, the
user can revise it according to her preferences and finally store it into a publicly accessible
CMIS server.

Figure 34: Workflow and components of scenario 1.

An overview of the different components and processes involved in the execution of this
scenario are shown in Figure 34. The desktop application only requires Java to be in-
stalled and is available for download at the following link:

http://forgetit.argela.com.tr/forgetIt_media/forgetItSecure.jnlp.

c© ForgetIT Page 87 (of 93)

http://forgetit.argela.com.tr/forgetIt_media/forgetItSecure.jnlp

ForgetIT Deliverable 8.4

B.2 Scenario 2: Automated Contextualization and Re-contextualization

This scenario is designed to highlight how contextualization and the evolution of context
can be used to provide a rich search experience over both preserved and active content.
In an attempt to show context evolution over an extended period of time we are using an
organization setting, but one not linked directly to WP10.

We are using publicly available transcripts and descriptive metadata that covers the de-
bates which take place within the UK Parliament24. This allows us access to data span-
ning a long period of time, in which there is continual evolution of political parties, con-
stituency boundaries, ministerial positions, etc. The dataset for this scenario was pre-
served running the Preservation Preparation workflow described in Section 4. The UK
Parliament debates were published using a CMIS repository (see Figure 35), so they
could be accessed by the PoF Middleware components.

Figure 35: CMIS Repository used to publish UK Parliament dataset.

Figure 36 shows the main search UI for this scenario, where a topic based search can
be performed. The dataset for this scenario has been processed in the PoF Middleware
and preserved in the Preservation System. Upon ingest, a specific Storlet was executed
to extract relevant information. The links in the left menu of the UI point to the preserved
copies of the debates which can be retrieved from the cloud storage. The tag cloud for
the world context is shown in Figure 37. This scenario is currently in a very early state of
development to form an initial Navigator component (Section 5.9). It is envisaged that fur-
ther development will take place to the demo alongside the work on the contextualization
and context evolution components.

The current version of the demo is accessible online at the following link:

http://services.gate.ac.uk/forgetit/search/.

24ParlParse - http://parser.theyworkforyou.com/

Page 88 (of 93) www.forgetit-project.eu

http://services.gate.ac.uk/forgetit/search/
http://parser.theyworkforyou.com/

Deliverable 8.4 ForgetIT

Figure 36: Main search interface for scenario 2.

Figure 37: World Context document view for scenario 2.

c© ForgetIT Page 89 (of 93)

ForgetIT Deliverable 8.4

B.3 Scenario 3: Automated Generation of Multimedia Diary

In scenario 3 we show-cased the PIMO Diary (see Figure 38), a diary application built on
top of the Semantic Desktop. This automatically generated diary enables reminiscence
and keeps preserved content useful (and joyful to revisit). The following aspects were
stressed:

• Contextualized Remembering with the PIMO as additional benefit for the Personal
Information Management of a user;

• Resources are part of clusters resembling prominent activities in the chosen time
period;

• Condensation of resources for a given time period and granularity;

• Rich context collected from the PIMO for resources (as local context for contextual-
ization in the PoF Framework);

• Use of image quality assessment and image concept detection in the PIMO in the
algorithm for selecting representatives for images in a diary entry.

The following components and methods were shown:

• Semantic Desktop & PIMO with the dedicated App PIMO Diary, developed in WP9;

• Image Quality Assessment & Classification, provided by the Extractor component
(Section 5.4) developed within WP4;

• Condensation & Contextualization in PIMO, provided by the Condensator (Sec-
tion 5.5) and Contextualizer (Section 5.5) components, developed within WP4 and
WP6, respectively.

The demonstration was done using DFKI’s Knowledge Management Department’s PIMO
including professional data as well as photos taken on business trips, most prominently
on the ForgetIT workshops. It resembled therefore a business-related scenario covering
also personal data, thus, still addressing the WP9 application scenario.

Explanations and videos on the PIMO Diary can be found in the Personal Preservation
Pilot I online documentation at the following link:

https://pimo.opendfki.de/wp9-pilot/pimodiary.html.

Page 90 (of 93) www.forgetit-project.eu

https://pimo.opendfki.de/wp9-pilot/pimodiary.html

Deliverable 8.4 ForgetIT

Figure 38: The PIMO Diary shown in scenario 3: the diary of the presenter of 2014.

c© ForgetIT Page 91 (of 93)

ForgetIT Deliverable 8.4

C Experimental APIs of the Memory Buoyancy Assessor

In the following we describe the main APIs and I/O formats for the MB Assessor compo-
nent, which is part of the Forgettor (Section 5.7). All the services reported below have
been deployed on a test RESTful server running at LUH premises, hosting the Forgettor
Server25. Sample code for the MB Assessor client, written in Java, is reported in Listing 5.

Querying MB Values of PIMO resources

This service allows the client to query the estimated MB values, and get a numerical
value from 0 to 1 in plain-text as a result (or NaN if the values are not yet estimated, or
the resource is not registered in the system).

1. REST service type: GET.

2. URI Input: http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?
u=<userID>&r=<resourceID>&t=<timestampinUNIXepochs>.

3. URI output: (plain-text) MB score in [0,1] or NaN.

4. Query example: http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/
query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130.

Register PIMO resources

In order to compute the MB scores using the background sub-component, the resources
must be registered; this service allows the client to send the list of resource IDs to register
for the computation.

1. REST service type: POST.

2. URI Input: http://forgetit.l3s.uni-hannover.de:8092/pimo/res/register.

3. URI output: a JSON response object that containing

• the response status code:
– CREATED: the resources have been successfully registered.
– NOT MODIFIED: the resources are already registered, or the attempt makes

no changes in the system.
– INTERNAL SERVER ERROR: server failed to register, internal error.
– PARTIAL CONTENT (for bulk registration): only a sub set of resources are

registered.

• the list of IDs for successfully registered resources.

25Forgettor Server - http://forgetit.l3s.uni-hannover.de:8092/application.wadl

Page 92 (of 93) www.forgetit-project.eu

http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=<user ID>&r=<resource ID>&t=<timestamp in UNIX epochs>
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=<user ID>&r=<resource ID>&t=<timestamp in UNIX epochs>
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130
http://forgetit.l3s.uni-hannover.de:8092/pimo/res/register
http://forgetit.l3s.uni-hannover.de:8092/application.wadl

Deliverable 8.4 ForgetIT

Listing 5: Sample code for MB Assessor client.
import javax . ws . rs . c l i e n t . AsyncInvoker ;
import javax . ws . rs . c l i e n t . C l i e n t ;
import javax . ws . rs . c l i e n t . C l i e n t B u i l d e r ;
import javax . ws . rs . c l i e n t . E n t i t y ;
import javax . ws . rs . c l i e n t . Invoca t ionCa l lback ;
import javax . ws . rs . c l i e n t . WebTarget ;
import javax . ws . rs . core . MediaType ;
import org . g l a s s f i s h . j e r sey . c l i e n t . C l i en tCon f i g ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBRequest ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBVEntity ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBVList ;
. . .

/ / Def ine the en t ry po in t o f the web serv i ce domain
Cl ien tCon f i g c l i e n t C o n f i g = new Cl ien tCon f i g () ;
c l i e n t = C l i e n t B u i l d e r . newCl ient (c l i e n t C o n f i g) ;
WebTarget t a r g e t = c l i e n t . t a r g e t (” h t t p : / / f o r g e t i t . l 3s . uni−hannover . de:8092 ”) ;
. . .

/ / Def ine an asynchronous REST request
f i n a l AsyncInvoker asyncInvoker = t a r g e t . path (” / pimo /mb/ bulk−query ”) .
request (MediaType . APPLICATION JSON) . async () ;

/ / Def ine a request ob jec t which conta ins c o l l e c t i o n ID (account) , epoch value o f demanded
/ / c a l c u l a t i o n timestamp , and a l i s t o f resource IDs

MBRequest req = new MBRequest () ;
req . setAccount (” pimo:1327593979868:1 ”) ;
req . setTime (1386686731);

L i s t<St r ing> res = new Ar rayL i s t <>(4);
res . add (” pimo:1381327141334:56 ”) ; / / the CMIS ID used i n the PoF Middleware
res . add (” pimo:1374842706949:3 ”) ;
res . add (” pimo:1385386608202:18 ”) ;
res . add (” pimo:1381327141334:55 ”) ;
res . add (” pimo:1365627012409:41 ”) ;

req . setResources (res) ;

/ / Send the asynchronous request to the serv i ce
En t i t y<MBRequest> r e q E n t i t y = E n t i t y . e n t i t y (req , MediaType . APPLICATION JSON) ;

MBVList futureResp = nul l ;

t ry {
futureResp = asyncInvoker . post (reqEn t i t y , new
Invocat ionCa l lback<MBVList>() {

@Override
public void completed (MBVList response) {

System . out . p r i n t l n (” Response e n t i t y ’ ” + response + ” ’ rece ived . ”) ;
for (MBVEntity mbve : response . getValues ()) {

System . out . p r i n t l n (mbve . toCompi ledStr ing ()) ;
}

}

@Override
public void f a i l e d (Throwable throwable) {

System . out . p r i n t l n (” I nvoca t i on f a i l e d . ”) ;
throwable . p r in tS tackTrace () ;

}

}) . get () ;

} catch (I n te r rup tedExcep t i on | Execut ionExcept ion e) {
e . p r in tS tackTrace () ;

}

c© ForgetIT Page 93 (of 93)

	Executive Summary
	Introduction
	PoF Framework Architecture
	PoF Reference Model
	PoF Middleware
	PoF Enterprise Service Bus
	Message-Oriented Middleware
	Enterprise Integration Patterns
	Asynchronous Routing Engine
	PoF ESB Implementation

	Middleware Configuration
	RESTful Service
	CMIS Integration
	Implementation of Reference Model Workflows
	Preservation Preparation Workflow
	Re-activation Workflow

	PoF Middleware Integrated Components
	ID Manager
	Metadata Repository
	Scheduler
	Extractor
	Condensator
	Collector/Archiver
	Forgettor
	Contextualizer
	Navigator
	Context-aware Preservation Manager

	Active Systems
	Semantic Desktop
	TYPO3
	CMIS-based User Applications

	Preservation System
	Digital Repository
	Preservation-aware Storage System

	PoF Framework: Second Prototype Implementation
	Conclusions
	Summary
	Assessment of Performance Indicators
	Evaluation of the PoF Framework

	Next Steps

	References
	Glossary
	Middleware Configuration and Administration
	Scenarios for the Second Prototype Demonstrations
	Scenario 1: Incremental Photo Preservation
	Scenario 2: Automated Contextualization and Re-contextualization
	Scenario 3: Automated Generation of Multimedia Diary

	Experimental APIs of the Memory Buoyancy Assessor

