
www.forgetit-project.eu

ForgetIT
Concise Preservation by Combining Managed Forgetting

and Contextualized Remembering

Grant Agreement No. 600826

Deliverable D8.6

Work-package WP8: The Preserve-or-Forget Reference
Model and Framework

Deliverable D8.6: The Preserve-or-Forget Framework –
Final Release

Deliverable Leader Francesco Gallo (EURIX)
Quality Assessor Mark Greenwood (USFD)
Dissemination level PU
Delivery date in Annex I M36 (January 2016)
Actual delivery date 31 March 2016
Revisions 16
Status Final Version
Keywords Preserve-or-Forget Framework, Integrated

Prototype and Components

ForgetIT Deliverable D8.6

Disclaimer

This document contains material, which is under copyright of individual or several ForgetIT
consortium parties, and no copying or distributing, in any form or by any means, is allowed
without the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consor-
tium warrant that the information contained in this document is suitable for use, nor that
the use of the information is free from risk, and accepts no liability for loss or damage
suffered by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for
any use that may be made of the information contained herein.

c© 2013-2016 Participants in the ForgetIT Project

Page 2 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Revision History

Version Major changes Authors
0.01 Document skeleton, ToC created EURIX
0.02 Updated document structure, preliminary in-

troduction, PoF architecture
EURIX

0.03 Added PoF Reference Model, sub-sections for
each middleware component

EURIX

0.04 Described middleware implementation, REST
APIs and CMIS, Preservation System, up-
dated architecture

IBM, EURIX

0.05 Described preservation preparation and re-
activation workflows, Digital Repository, up-
dated appendices

EURIX, LUH, USFD,
DFKI, IBM

0.06 Added information model, updated middle-
ware REST APIs, preliminary sections about
Semantic Desktop and TYPO3

EURIX, DFKI, dkd,
LUH

0.07 Added ID Manager, Scheduler, Extractor, Col-
lector/Archiver

LTU, CERTH, LUH,
EURIX

0.08 Added Condensator and Contextualizer, up-
dated previous components, introduction, pre-
liminary executive summary

CERTH, USFD, EU-
RIX

0.09 Completed middleware components, added
prototype implementation

LTU, USFD, EURIX

0.10 Reviewed all sections, added software devel-
opment, appendix for Forgettor APIs, added
glossary

EURIX, LUH, DFKI,
dkd

0.11 Completed all sections, updated references,
first draft version circulated for comments

EURIX

0.12 Reviewed references and glossary, created
executive summary

EURIX

0.13 First complete version for project wide review EURIX
0.14 Implemented comments from all partners, ver-

sion for internal QA
EURIX

0.15 Implemented comments from internal QA, fi-
nal version

EURIX

1.00 Submitted version EURIX

c© ForgetIT Page 3 (of 126)

ForgetIT Deliverable D8.6

List of Authors

Partner Acronym Authors

LUH Andrea Ceroni, Tuan Tran
LTU Ingemar Andersson
IBM Doron Chen
DFKI Heiko Maus, Andreas Lauer, Sven Schwarz
CERTH Olga Papadopoulou, Evlampios Apostolidis, Alexandros

Pournaras, Chrysa Collyda, Vasileios Mezaris
dkd Johannes Goslar
USFD Mark A. Greenwood
EURIX Martina Fogliati, Francesco Gallo

Page 4 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Table of Contents

Executive Summary 8

1 Introduction 9

2 PoF Framework Architecture 12

3 PoF Reference Model 15

3.1 Implementation of the Reference Model . 17

4 PoF Middleware 22

4.1 PoF Enterprise Service Bus . 22

4.1.1 Message-Oriented Middleware . 22

4.1.2 Enterprise Integration Patterns . 24

4.1.3 Asynchronous Routing Engine . 25

4.1.4 PoF ESB Implementation . 26

4.2 Middleware Configuration . 27

4.3 RESTful Service . 28

4.4 CMIS Integration . 28

5 PoF Middleware Integrated Components 31

5.1 ID Manager . 31

5.2 Metadata Repository . 34

5.3 Scheduler . 35

5.4 Extractor . 38

5.5 Condensator . 41

5.6 Collector/Archiver . 42

5.7 Forgettor . 44

5.8 Contextualizer . 48

5.9 Navigator . 49

c© ForgetIT Page 5 (of 126)

ForgetIT Deliverable D8.6

5.10 Context-aware Preservation Manager . 50

6 Active Systems 53

6.1 Semantic Desktop . 53

6.2 TYPO3 . 54

6.3 CMIS-based User Applications . 55

7 Preservation System 57

7.1 Digital Repository . 57

7.2 Preservation-aware Storage System . 59

8 Third Prototype Implementation 61

9 Conclusion 67

9.1 Assessment of Performance Indicators . 67

9.1.1 Evaluation of the PoF Framework . 69

9.2 Lessons Learned . 70

9.3 Vision for the Future . 70

10 References 72

Glossary 76

A Middleware Configuration and Administration 77

B Preserve-or-Forget RESTful Service 86

C DSpace Installation and Configuration 89

C.1 Introduction . 89

C.2 Installation Procedure . 89

C.3 DSpace REST API . 95

C.4 Administration and Users Permissions . 99

C.5 Import and Export . 100

Page 6 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

C.6 Versioning and Other Features . 102

C.7 AntiVirus in DSpace: ClamAV . 103

C.8 Curation Tasks . 104

C.9 Cloud Storage . 106

C.10 Replication Suite . 111

C.11 Customized Cloud Features: ownCloud . 114

D Implementation of Reference Model Workflows 118

D.1 Preservation Preparation Workflow . 118

D.2 Re-activation Workflow . 123

E Experimental APIs of the Memory Buoyancy Assessor 125

c© ForgetIT Page 7 (of 126)

ForgetIT Deliverable D8.6

Executive Summary

This document describes the Preserve-or-Forget (PoF) Framework, discussing the imple-
mentation of the prototype and the integrated components. In this deliverable we present
the final release of the framework, developed during the third year of the project and
based on the second release, described in deliverable D8.4.

The framework prototype is based on the architecture and integration plan defined in D8.1,
integrates the components developed in the technical WPs and provides a foundation for
application pilot development in WP9 and WP10. The PoF Framework is made up of the
Active Systems (information management systems), the PoF Middleware (implementing
core ForgetIT principles) and the Preservation System.

The reference workflows defined in the final version of the PoF Reference Model in D8.5
have been used for the development of the framework. Currently two workflows have
been implemented and integrated, for preservation preparation and re-activation. The
other workflows for the evolutionary part of the model have been partially implemented
in the final framework release or in other components developed in the technical WPs.
Compared to the second prototype, the final release also implements the PoF information
model which was not available after the second year.

The PoF Middleware REST APIs, defined in D8.1, have been updated with respect to the
second release. For data exchange between the Active Systems and the PoF Middleware
we leverage the OASIS CMIS standard. The PoF Middleware has been implemented as
a Message Oriented Middleware (MOM) and on top of the messaging layer we added
a rule-based routing engine for workflow management. The implementation based on
Apache ActiveMQ and Apache Camel is described. Further improvements to the work-
flow management are also outlined, for example those related to the use of Enterprise
Integration Patterns (EIP) or to the integration of additional ESB components on top of
the existing solution. For the middleware components identified in D8.1, either providing
common tasks or implementing core ForgetIT functionality, we provide information about
the status and their integration in the third release.

Concerning the Preservation System, we describe the two main components, the Digital
Repository and the Preservation-aware Storage System, based on cloud technologies.
Both systems implement the archive functionality for the preservation of ForgetIT content.
The APIs exposed by the Preservation System are discussed and the implementation
using DSpace and OpenStack Swift is described. We also describe how Storlets are
involved in the current workflow.

Finally we provide additional information about the software development process and the
collaborative tools, as well as preliminary considerations about the license for the core
components of the PoF Framework. The software documentation for the PoF Middleware
and the Preservation System APIs are available on the project web site.

We decided to include here also other parts from D8.4 which were not affected by the
update during the third year development, in order to provide a self-contained document.

Page 8 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

1 Introduction

The main topic of this document is the description of the final prototype implementation
of the Preserve-or-Forget (PoF) Framework, which integrates the results achieved during
the whole project lifetime and is based on the final release of the PoF Reference Model re-
ported in deliverable D8.5 [Gallo et al., 2016]. This deliverable consists of the description
of the prototype which is running in the ForgetIT testbed environment hosted by EURIX
(see Section 6 in deliverable D8.1 [Gallo et al., 2013]).

The PoF Framework provides an integration framework for all available components and
is based on the ForgetIT architecture described in deliverable D8.1, where an overview
of the architecture layers and the main components are included. The framework is used
to validate the basic workflows for the three core ForgetIT principles: managed forget-
ting, contextualized remembering and synergetic preservation. More specifically, the final
prototype implements the relevant workflows of the functional part of the model, focus-
ing on the Core and Remember & Forget Layers. The final release also implements the
information model, including support for Situations, Collections and Items.

Continuing with the same approach adopted for the first two prototypes, the final prototype
was built on top of the integrated components, keeping the original approach based on
open and widely adopted technologies, with several improvements in term of flexibility
and number of integrated components.

The development of the PoF framework is the joint effort of all project partners, performed
in a collaborative way, sharing a code repository and tracking open issues to be discussed
in periodic meetings by all interested partners.

The implementation of the final prototype leverages the outcomes of the other technical
WPs: the analysis of workflow models for synergetic preservation, reported in deliverables
D5.2 and D5.3; the definition of information packages created in the PoF Middleware and
imported in the Preservation System, based on the results provided by WP5; the com-
ponents developed by technical WPs and integrated in the prototype, described in detail
in the last version of the corresponding deliverables, namely D3.4, D4.4, D5.4and D6.4
for the PoF Middleware components, D7.4 for the Preservation-aware Storage System,
D8.4 for the Digital Repository and finally D9.5 and D10.4 for the Active Systems. More-
over, the outcomes of WP2 (see for example deliverables D2.2 and D2.4) contributed
to the definition of the PoF Reference Model which inspired the current implementation,
while the issues related to framework licensing and possible mechanisms to publish and
disseminate ForgetIT software as open source were analyzed in collaboration with WP11.

The component descriptions in this document focus only on those aspects relevant for
integration, such as APIs and I/O formats and protocols, while for component implemen-
tation details please refer to the relevant deliverables from the corresponding WPs.

The document is organized as in the following: a summary of the relevant information
concerning the PoF Framework architecture is reported in Section 2; an overview of the
PoF Reference Model, the relevant workflows implemented in the third prototype and the

c© ForgetIT Page 9 (of 126)

ForgetIT Deliverable D8.6

implemented information model are described in Section 3; the implementation of the
three main framework layers and their integration is discussed in dedicated Sections, for
the PoF Middleware (Section 4 and Section 5), the Active Systems (Section 6) and the
Preservation System (Section 7), respectively; in these Sections we also describe the
internal components, the progress with respect to the second prototype and their final
deployment; the prototype implementation, including a short description of the software
development, documentation and licensing, is reported in Section 8; in Section 9 we
describe the lessons learned and provide an assessment of the results against WP8
success indicators, which have been defined in the project proposal; finally we included
a few Appendices containing details about the implementation or configuration of specific
components: Appendix A provides implementation details for the configuration of the PoF
Middleware, whose REST APIs are described in Appendix B; Appendix C provides further
details about the installation and configuration of DSpace with some advanced topics
that were investigated and developed during the third year, while Appendix D describes
the implementation of the workflows; finally, Appendix E provides information about the
experimental APIs for the Memory Buoyancy (MB) assessor.

Progress after second prototype

The third prototype includes several improvements with respect to the second release:

• the messaging layer infrastructure and the routing engine have been further de-
veloped, using the most updated versions of the core libraries and improving the
definition of relevant workflows; the web console for managing the messaging in-
frastructure, monitoring the workflows and the queues, has been improved;

• the middleware software has been improved and makes use of additional enterprise
pattern, making the software more robust and flexible;

• the PoF Middleware REST APIs have been updated; additional features of the CMIS
standard [OASIS, 2013] are now used to support the preservation value and the
context;

• the last versions of the middleware components have been integrated, while new
components not available in the second release, such as the Context-aware Preser-
vation Manager have been added;

• the Preservation System has been updated: a new version of the Digital Repository
is used and the integration mechanism to preserve and re-activate content is now
based on pure REST APIs; a new implementation of the cloud storage components
with additional Storlets has been integrated;

• the integration of the Active Systems, based on CMIS standard, has been improved;

• the framework implements the information model, supporting situations, collections
and items for the representation of content generated in the Active Systems.

Page 10 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

The PoF Framework developed during the three project years implements the PoF Ref-
erence Model, which is now available, and better implements the core principles of the
project, integrating the new results of the project. Further details are provided in Section 9,
where we discuss the progress compared to the success indicators.

Target audience for this deliverable

This deliverable targets a technically oriented readership, which is interested in the tech-
nical aspects of the implementation of the PoF Framework, plans to adopt the framework
or wants to use it as a blueprint for a similar project.

c© ForgetIT Page 11 (of 126)

ForgetIT Deliverable D8.6

2 PoF Framework Architecture

The architecture of the PoF Framework, described in deliverable D8.1 [Gallo et al., 2013],
is made up of three layers: Active Systems, Preserve-or-Forget (PoF) Middleware and
Preservation System. The latest version of the PoF architecture is depicted in Figure 1.

The Active Systems represent user applications or any information management system.
The Preservation System, which implements the PoF Framework archive, is composed by
two sub-systems: a Digital Repository and a Preservation-aware Storage, which includes
a Cloud Storage Service. The Preservation System provides both content management
and typical archive features required for the synergetic preservation. The PoF Middleware
is intended to enable seamless transition from Active Systems to the Preservation System
(and vice versa) for the synergetic preservation, and to provide the necessary functional-
ity supporting managed forgetting and contextualized remembering. The PoF Middleware
provides the communication layer for all components developed in WP3-WP6, implement-
ing the concept of Enterprise Service Bus (ESB) using a Message Oriented Middleware
(MOM) (see Section 4). The middleware connects the user applications with the archive
and provides the infrastructure to fetch content from the applications. Finally, the middle-
ware manages the preservation preparation and re-activation workflows interacting with
the Active System and the Preservation System.

Compared to previous versions, the updated component diagram in Figure 2 has been
improved, mainly for what concerns the Preservation System composite structure, where
the internal components have been reviewed according to the recent developments in
WP7 and WP8. Additional details have been added for the PoF Middleware components:
for example the Policy Engine developed by WP3 has been added as part of the Forgettor
component. No other major changes have been applied to the PoF architecture compared
to the version used by the first release of the framework.

The ForgetIT framework leverages the adoption of standard lightweight technologies for
data exchange and communication between user application and middleware, the inte-
gration of the core components in the middleware using a message oriented approach
with a rule engine for message routing and workflow management, the long-term preser-
vation of content based on preservation-aware cloud-based storage where preservation
tasks and other processing activities executed close to the data (directly in the storage).

The integration of Active Systems and Preservation System with the PoF Middleware is
based on REST APIs, used to trigger preservation, re-activate content and monitor the
running processes or the preservation status of specific resources. Bi-directional data ex-
change between Active Systems and PoF Middleware is based on Content Management
Interoperability Services (CMIS) standard [OASIS, 2013]: the Active Systems publish the
content to be preserved using a CMIS compliant repository and the re-activated content
is provided by the PoF Middleware using another CMIS repository deployed in the mid-
dleware. Hence, any user application supporting CMIS can be seamlessly integrated with
the PoF Framework. Further information about CMIS is in Section 4 and Section 6.

Page 12 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Fi
gu

re
1:

A
rc

hi
te

ct
ur

e
D

ia
gr

am
of

th
e

P
re

se
rv

e-
or

-F
or

ge
t(

Po
F)

Fr
am

ew
or

k.

c© ForgetIT Page 13 (of 126)

ForgetIT Deliverable D8.6

Figure
2:

PoF
Fram

ew
ork

com
ponentdiagram

:
the

com
posite

structure
w

ith
internalcom

ponents
is

show
n.

Page 14 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

3 PoF Reference Model

The PoF Reference Model, described in deliverable D8.5 [Gallo et al., 2016], served as
conceptual guideline for the integration process of the PoF Framework and aims to en-
capsulate the core principles of the ForgetIT approach into a re-usable model.

In the following we summarize the main concepts for the functional and information part
of the model, relevant for the prototype description.

A representation of the functional part of the model is depicted in Figure 3. The frame
represents the domain of our model, where information and preservation systems are
considered as part of a joint ecosystem, which stresses the smooth transitions and the
synergetic interactions rather than the system borders. The functional part is made up of
three layers. The Core Layer considers basic functionalities required for connecting the
Active System and the Preservation System; building upon this layer, the Remember &
Forget Layer introduces brain-inspired and forgetful aspects; finally, the Evolution Layer
is responsible for all types of functionalities dealing with long-term change and evolution,
such as implementing the contextualized remembering. For each layer we also show
the functional entities and the representative workflows (double pointed arrows). The
position of the workflows is associated to the layer they belong to, so for the outer arrows
the Evolution layer. The precise positions are meant to show which part each of the
evolution workflows is closer to, e.g. the Situation Change is closer to the Active System,
the System Change can affect both Active and Preservation System, and the Setting
Changes are mainly observed in the Preservation System.

The functional model workflows described in D8.5 are reported in the following: the
Preservation Preparation, the Re-activation and the two related to system change, Active
System Change and Preservation System Change. In a nutshell, they are responsible for
transferring content to be preserved from the Active System to the Preservation System,
to enable the Active System to retrieve and re-activate content previously transferred to
the Preservation System and to manage changes in either the Active System or in the
Preservation System.

The different steps of such workflows involve different PoF Framework components, mainly
for what concerns the PoF Middleware. We provide a representation of the activation of
the different components in each workflow in Figure 4 and Figure 5 for the Remember &
Forget Layer and in Figure 6, Figure 7, Figure 8 and Figure 9 for the Evolution Layer.

It is worth noting that some components are involved only in one of the layers, e.g. the
Remember & Forget Layer or the Evolution Layer (see Table 1) and that Figure 7 about
the Setting Change workflow includes also the Active System and Preservation System
components, while the others involve only the components within the PoF Middleware.

An overview of the Information Model is depicted in Figure 10. An explanation of the
model entities is available in deliverable D8.5.

c© ForgetIT Page 15 (of 126)

ForgetIT Deliverable D8.6

Figure 3: High-level functional view of the PoF Reference Model (from D8.5).

Figure 4: Mapping between the PoF Middleware Components and the Preservation Prepa-
ration Workflow.

Page 16 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Figure 5: Mapping between the PoF Middleware Components and the Re-activation Work-
flow.

Figure 6: Mapping between the PoF Framework Components and the Situation Change
Workflow.

3.1 Implementation of the Reference Model

The implementation of the framework is based on the functional and information models
above. In the final release we improved the implementation of the Preservation Prepara-
tion and Re-activation workflow, while other parts of the remaining workflows were either
implemented directly in the middleware or embedded in specific components, e.g. the

c© ForgetIT Page 17 (of 126)

ForgetIT Deliverable D8.6

Figure 7: Mapping between the PoF Framework Components and the Setting Change Work-
flow.

Figure 8: Mapping between the PoF Framework Components and the Active System
Change Workflow.

Context-aware Preservation Manager or the Preservation-aware Storage System. The
Preservation Preparation and Re-activation workflow have been implemented for both
use cases.

Page 18 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Figure 9: Mapping between the PoF Framework Components and the Preservation System
Change Workflow.

The structure of the information model has been fully implemented in the final release. In
particular, different user applications were integrated with the middleware by mapping the
content in each application to Situations, Collections and Items using the CMIS standard,
as discussed later. Moreover the Preservation Entity models the definition of the packages
stored in the Preservation System, including different metadata types and the context. It
is worth noting that the different IDs and the ID Mapping Table could be implemented in
different ways, we used an approach based on Java Persistence with an object DB and a
dedicated component, the ID Manager, to support the mapping.

Further details are provided in Appendix D, where we include some application screen-
shots from the prototype.

c© ForgetIT Page 19 (of 126)

ForgetIT Deliverable D8.6

Functional Entity Model Layers PoF Middleware Compo-
nents

ID Management Core, Remember &
Forget

ID Manager

Exchange Support Core, Remember &
Forget

Collector, Archiver,
Metadata Repository

Content Value Assessment Remember & Forget Forgettor
Managed Forgetting & Appraisal Remember & Forget Forgettor
De-contextualization Remember & Forget Contextualizer
Contextualization Remember & Forget Contextualizer, Ex-

tractor, Condensator
Preservation Contract Management Remember & Forget Context-aware

Preservation Man-
ager

Re-contextualization Remember & Forget Contextualizer,
Archiver

Search & Navigation Remember & Forget Navigator
Metadata Management Remember & Forget Forgettor, Extractor,

Condensator, Contex-
tualizer, Metadata
Repository, Collec-
tor, Archiver

Content Value Re-assessment Remember & Forget Forgettor, Contextu-
alizer

Context-aware Preservation Man-
agement

Evolution Context-aware
Preservation Man-
ager

Evolution Monitoring Evolution Context-aware
Preservation Man-
ager

Context Evolution Management Evolution Context-aware
Preservation Man-
ager, Contextualizer

Table 1: Mapping between PoF Reference Model Functional Entities and the PoF Middle-
ware Components (from D8.5).

Page 20 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Fi
gu

re
10

:
In

fo
rm

at
io

n
M

od
el

fr
om

an
Im

pl
em

en
ta

tio
n

P
er

sp
ec

tiv
e

w
ith

A
ll

C
om

po
ne

nt
s

(U
se

r
P

er
sp

ec
tiv

e
in

Ye
llo

w
)

c© ForgetIT Page 21 (of 126)

ForgetIT Deliverable D8.6

4 PoF Middleware

In this Section we describe the implementation of the PoF Middleware and the integration
with Active Systems and the Preservation System. We also describe the use of CMIS
standard for data exchange between user applications and the PoF Framework. The
components integrated in the PoF Middleware are described in Section 5.

4.1 PoF Enterprise Service Bus

The PoF Middleware has been designed using the Enterprise Service Bus (ESB) ap-
proach. The ESB is a well-established architecture design which has been adopted in
many enterprise applications and systems over the past ten years and is still very pop-
ular in the implementation of both commercial and open source solutions. The role of
the ESB in the middleware has been discussed in many previous deliverables, both from
the architectural point of view (see for example deliverables D5.1 [Nilsson et al., 2013],
D5.2 [Nilsson et al., 2014] and D8.1 [Gallo et al., 2013]) and from the implementation
point of view (see deliverable D8.3 [Gallo et al., 2014]). In a nutshell, the role of the
ESB in the PoF Middleware is mainly intended to provide a communication layer for all
components, providing loose coupling and reducing the dependency between the com-
ponents: using the ESB approach, the number of point-to-point connections among the
components and the number of point of failures is reduced to a minimum (if not to zero)
and the only requirement to get on the bus is to agree with the service contract, namely
to integrate with the communication APIs exposed by the ESB and to support data ex-
change using a common exchange format. For a description of the ESB approach,
see [Chappell, 2004].

4.1.1 Message-Oriented Middleware

In order to implement the PoF ESB, we adopted the Message Oriented Middleware
(MOM) approach, where data and other information is received by or passed to the com-
ponents connected to the ESB in the form of messages, as shown in Figure 11: this
means that only a representation of the data is exchanged and this can be processed
and modified locally by each component. A MOM lies between the applications acting as
a message mediator between them by means of a communication channel that carries
self-contained units of information which are the messages. The MOM mediates events
and messages among distributed systems providing the required degree of decoupling.
Figure 11 provides a view of this kind of architecture.

A MOM is intended mainly for communication in an loosely-coupled, reliable, scalable
and secure manner amongst distributed applications or systems. Compared to situa-
tions where the information exchange takes place directly among the distributed appli-
cations (coupling), the MOM makes use of asynchronous messaging and the message

Page 22 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Figure 11: Message based communication, taken from [Chappell, 2004].

senders (Producers or Publishers) know nothing about receivers (Consumers or Sub-
scribers) and receivers know nothing about senders, as depicted in Figure 11. MOM is
a suitable solution for the management and the integration of the various components in
the project, where several heterogeneous components are integrated in a middleware and
asynchronous communication is a requirement. If the MOM provides a reliable and flex-
ible communication infrastructure, we need to organize the data flow and task execution
with messages in order to implement complex workflows.

The MOM also has the responsibility to ensure that the messages reach their intended
destination and that they are not lost in case of network failure, therefore the messages
have to be stored into a persistent memory and accessed when requested from the Con-
sumer. This feature is referred to as message persistence. Figure 12 depicts an example
of message exchange where the Consumer looses the connection to the MOM but the
message does not get lost.

Figure 12: Example of message persistence, taken from [Chappell, 2004].

c© ForgetIT Page 23 (of 126)

ForgetIT Deliverable D8.6

4.1.2 Enterprise Integration Patterns

For the implementation of the different workflows, we make use of Enterprise Integration
Patterns (EIP), defined in the fundamental book by G. Hohpe [Hohpe and Woolf, 2003].
The EIP approach has been extensively adopted to design asynchronous messaging
architectures used to build integration solutions and is used in several enterprise-class
applications. The book describes 65 design patterns for the use of Enterprise Application
Integration (EAI) and MOM in the form of a pattern language. They are accepted solu-
tions to recurring problems within a given context. Patterns are abstract enough to apply
to most integration technologies, but specific enough to provide hands-on guidance to
designers and architects. Patterns also provide a vocabulary for developers to efficiently
describe their solution. Patterns are not ’invented’; they are harvested from repeated use
in practice. A coherent collection of relevant patterns that form an integration pattern
language is available on the EIP web site1.

An example of typical EIP is the Message Router, depicted in Figure 13. A Message
Router pattern can be used to decouple a message source from the ultimate destination
of the message, acting as a special filter which consumes a message from one mes-
sage channel and republishes it to a different message channel depending on a set of
conditions. The Message Router connects to multiple output channels and the compo-
nents surrounding the Message Router are completely unaware of the existence of a
Message Router. A key property of the Message Router is that it does not modify
the message contents, being only concerned with the destination of the message. This
pattern has been extensively used in the implementation of internal PoF Middleware com-
ponents.

Figure 13: Message Router Enterprise Pattern.

Another pattern example, which was frequently used in the PoF Middleware implementa-
tion is the Service Activator, depicted in Figure 14. A Service Activator con-
nects a message channel to a synchronous service, which is invoked whenever a mes-
sage is received. The activator receives the message (asynchronously) and is capable
to identify which service to invoke (synchronously) and what data to pass by process-
ing the message and extracting information necessary to invoke the service, such as the
query parameters. The activator can always invoke the same service (for example in the

1Enterprise Integration Patterns - http://www.eaipatterns.com/

Page 24 (of 126) www.forgetit-project.eu

http://www.eaipatterns.com/

Deliverable D8.6 ForgetIT

middleware implementation we used configuration properties), or can use invoke a given
service based on message content. The main purpose of the activator is to manage the
messaging details and invoke the service like any other client (the service is not aware
that it is invoked through messaging). In this way the service developers can assume that
their service will always be invoked synchronously, without messaging, and the activator
enables service invocation through messaging. After invoking the service, the aggregator
blocks during service execution till request completion: when the service returns the re-
sult, the activator can return a message with such information, so the service invocation
using an activator implements a regular Request-Reply behaviour. A Service Activator
is also serving as another pattern, the Messaging Gateway, since it separates the mes-
saging details from the service. The activator can implement two patterns: the Polling
Consumer (it polls for a message, blocks while processing it and then polls for another,
returning immediately if no message is available) or a Event-Driven Consumer (it is
triggered by message delivery).

Figure 14: Service Activator Enterprise Pattern.

It is worth noticing that several patterns can be used in combination in order to achieve
the required behaviour: for example when describing the Service Activator pattern,
other patterns have been mentioned.

Some basic patterns have been used very often in the middleware. Such patterns include,
for example, Request-Reply, Aggregator or Message Filter, to name just a few.
The full list of EIPs is available in [Hohpe and Woolf, 2003].

4.1.3 Asynchronous Routing Engine

Message routers control how messages are routed among the services in a ESB appli-
cation. Implementing a flexible and efficient message routing is crucial to fully exploit

c© ForgetIT Page 25 (of 126)

ForgetIT Deliverable D8.6

the benefits of asynchronous messaging. Different kinds of routers are available, associ-
ated to the different patterns. For the PoF Middleware implementation we used an asyn-
chronous routing engine supporting all the reference integration patterns to implement
business logic within the middleware.

In the PoF Middleware, the Scheduler component makes use of the Message Router
pattern described above to process the incoming messages and trigger specific workflows
based on the message properties. We provide an example taken from the middleware
source code in Appendix A, where the Scheduler message route is defined using Spring
XML and Apache Camel (see next Section). Based on the value of different headers for
the incoming message, a specific logic is implemented.

4.1.4 PoF ESB Implementation

For the implementation of the ESB we make use of two components provided by the
Apache ServiceMix2 suite: Apache ActiveMQ [Snyder et al., 2011], for implementing the
messaging system (broker), and Apache Camel [Ibsen and Anstey, 2010], for implement-
ing a rule-based routing engine running on top of the broker.

ActiveMQ is an open source, Java Message Service (JMS) 1.1 compliant MOM from
the Apache Software Foundation that provides high-availability, performance, scalability,
reliability and security for enterprise messaging. It also provides all the MOM functionali-
ties allowing the user to implement and customize specific message producers and con-
sumers that exchange information through queues and topics. ActiveMQ is commonly
adopted in enterprise scenarios when an asynchronous message bus is needed (see for
example [Henjes et al., 2007, DAI and ZHU, 2010] and other references available in the
literature).

On top of the message broker implemented by ActiveMQ, a rule-based routing and medi-
ation engine has been added, in order to implement the middleware workflows using one
of the EIPs. The rule engine is provided by Apache Camel.

As will be described in Section 8, the package eu.forgetit.middleware of the PoF
Middleware Java project contains the main classes for the implementation of the PoF
Middleware.

The final release contains the latest versions of both components, which have been up-
graded with respect to the second prototype: the new versions provide several improve-
ments in terms of stability and configuration and required some effort to upgrade the
middleware Java code accordingly.

For the final release we further improved the monitoring interface for the messaging sys-
tem and the routing engine, using an updated version of hawtio3, a web monitoring con-
sole based on HTML5 that integrates seamlessly with ActiveMQ and Camel: this graphical

2Apache ServiceMix - http://servicemix.apache.org
3hawtio - http://hawt.io

Page 26 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

console replaces the old ActiveMQ GUI. The flow of messages in the different queues, up-
dated in real time during workflow execution, is shown in Figure 15, where we expanded
the route of the Scheduler component: the different conditions using the message pat-
terns described above are shown with a graphical notation. Additional screenshots of the
hawtio console for the middleware instance in the testbed are shown in Appendix A.

Figure 15: Message Flow Monitoring for the Scheduler Route.

4.2 Middleware Configuration

The configuration of the messaging system and of the routing engine makes use of Spring
XML framework. Sample configuration files are described in Appendix A. The broker con-
figuration is used to instantiate the connection when the PoF Middleware server running
in Apache Tomcat is started. The queues and the topics are automatically created. Fi-
nally, all middleware components are defined as Spring beans, therefore their instances
are created and maintained over time by the Spring framework.

The configuration of Apache Camel using Spring XML is straightforward. Sample configu-
ration for the messaging broker and the route for two workflows (preservation preparation
and re-activation) is reported in Appendix A. Each workflow is represented as a sequence
of steps associated to specific Spring beans corresponding to the middleware compo-
nents. The Spring XML representation is associated to different patterns and defines a
language for implementing specific rules associated to the messages.

We also provide an excerpt of Java code taken from the Extractor in Appendix A: the
method for image analysis used in the Apache Camel route defined above makes use of
Exchange class, which is part of the Camel APIs and contains the message information
(header and body). This approach has been used for all components in the middleware.

c© ForgetIT Page 27 (of 126)

ForgetIT Deliverable D8.6

The message header is typically used to share high-level information required for flow
control, while the message body contains the data. In the current implementation, we
use JavaScript Object Notation (JSON) format to represent message content. After pro-
cessing the message, extracting information and obtaining some results, the message
body and header can be updated and then passed to the flow control wrapped in the Ex-
change object. Following the asynchronous message approach, the next destination of
the message is unknown to the component class, the new message is sent to one of the
instances of the next component in the flow using the route definition.

4.3 RESTful Service

REST APIs are published using Jersey4, the reference implementation of JAX-RS speci-
fication for RESTful web services.

The REST APIs make use of JSON for information exchange and support CMIS identifiers
for managing the resources.

The exposed APIs are reported in Appendix B, where we describe the available APIs with
the expected parameters and the output format. The list of APIs exposed by the PoF
Middleware RESTful web server is available as W3C WADL format.

4.4 CMIS Integration

Content Management Interoperability Services (CMIS) is an open standard that allows
different content management systems to inter-operate over the web, defining an abstrac-
tion layer for controlling diverse document management systems and repositories using
web protocols. CMIS defines a common data model, which encapsulates the core con-
cepts found in most content management systems, covering typed files and folders with
generic properties that can be set or read (see Figure 16). CMIS defines also protocol
bindings that can be used by applications to manipulate content stored in a repository,
using WSDL, SOAP and AtomPub. The CMIS specification provides an API that is pro-
gramming language-agnostic. The Java-based library provided by Apache Chemistry
[Müller et al., 2013] has been used in the Collector component implementation.

An Active System can interact with the PoF Framework through the REST APIs described
above and exchanging data using CMIS standard [OASIS, 2013]. The Active System acts
as a data-deliverer, so any information system that supports CMIS could act as an Active
System in the PoF Framework. In Section 6 we describe the two main Active Systems
under test in the project (Semantic Desktop and TYPO3 CMS), along with other prototype
user applications which could be integrated with the framework.

CMIS supports items, documents and folders as basic types, including their relationships.

4Java Jersey - https://jersey.java.net

Page 28 (of 126) www.forgetit-project.eu

https://jersey.java.net

Deliverable D8.6 ForgetIT

Figure 16: CMIS data model, taken from Alfresco web site.

Each CMIS Object type (cmis:item, cmis:document, cmis:folder) can be pre-
served in the PoF Framework without sending the actual details about how the data is
stored in the Active System, since CMIS is used as a standard to exchange data between
the Active System and the middleware.

Several implementations of a CMIS repository are available and have been used in the
final framework release. For the Semantic Desktop the CMIS repository makes use of
the OpenCMIS (Apache Chemistry) library [Müller et al., 2013], while TYPO3 CMS uses
Alfresco CMIS [Bergljung, 2014].

The PoF Middleware accesses the content in the Active System CMIS repository using
the CMIS ID which is provided when a preservation request is triggered using the REST
APIs or when an external process is triggering such preservation. See the description of
the Collector component in Section 5.6 for further details. The ID Manager component
manages the mapping between the CMIS ID and the other identifiers in the framework
(see Section 5.1).

The PoF Middleware can access these objects and pull required information. If the PoF
Middleware needs to know how many relations to this item exist it asks for all associated
cmis:relation entities. Relying on this CMIS standard enables the PoF to communi-
cate with any component that supports CMIS, which is flexible and doesn’t require any
special ForgetIT implementations of the Active System to exchange data. Each document
should contain information about what type of element the object is exactly.

The information provided using CMIS representation includes also the Preservation Value
(PV) associated to the resource. We foresee two different approaches here: the calcula-
tion of the PV could be performed by the Active System itself (as done by the Personal
Information MOdel (PIMO), for example) or could provide different evidences for such
calculation. This case has been implemented within TYPO3.

c© ForgetIT Page 29 (of 126)

ForgetIT Deliverable D8.6

Different strategies can be implemented by an Active System after a given content is
preserved, for example it could be deleted from the Active System CMIS repository (but
the Active System should be able to correctly identify it during re-activation).

When restoring an object from the Preservation System, the CMIS standard is used again,
because the PoF Middleware provides its own CMIS repository based on OpenCMIS
(Apache Chemistry) library: when requesting archived content, the PoF Middleware re-
turns a CMIS ID which can be used to fetch the content from middleware CMIS repository
(see REST APIs above). This can also enable new scenarios, when for example the
Active System is no more available and the archived content must be retrieved.

The role of CMIS in the information model is highlighted in Figure 10, since it is one of
the classes extending the Preservation Entity Identifier. In the model workflows, every
time the ID Manager and Collector components are used, the CMIS standard is used
to identify and retrieve the content. Moreover, during the Re-activation workflow, the
middleware exposes the content through CMIS, as mentioned above: as a consequence,
the way a user application can fetch content back from the middleware implies the use of
CMIS.

One of the main improvements of the final release is the implementation of different CMIS
repository adapters, for each application type, capable of converting the CMIS Object
information to preserved content metadata and to map the original content in the user
application to Collections and Items based on the CMIS Object type.

Page 30 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

5 PoF Middleware Integrated Components

Compared to the previous prototypes, the final framework release integrates in the PoF
Middleware the updated versions of existing components along with new ones. The in-
dividual components in the middleware are shown in Figure 1. In this section, for each
middleware component we briefly describe the role in the overall framework, the contribut-
ing partners and reference deliverables, a short description of the integration mechanism
and the deployment information.

Additional information about licensing the core components of the PoF Framework as
open source is discussed in Section 8. In this Section we provide licensing information
for each component separately.

5.1 ID Manager

Component Role The ID Manager mediates between the IDs used in the Preservation
System components (Digital Repository and Preservation-aware Storage System) and
the IDs used in the Active Systems. Such IDs are associated to the resources to be
preserved and are used during Preservation Preparation and Re-activation workflows or
for monitoring the preservation status of the resources. The mapping is maintained by the
ID Manager using a unique ID which is generated and managed by the PoF Middleware
internally. The information is stored in a internal object DB, shared with the Metadata
Repository component (see Section 5.2).

WP and Deliverables The ID Manager is developed within WP8 (integration with the
messaging layer and ID management), WP3 (scheduling of forgetting process) and WP5
(scheduling of archiving process). The previous release was described in deliverable
D8.4 [Gallo et al., 2015a], the contributing partners are mainly EURIX and LUH.

Integration and Deployment The ID Manager is written in Java and is included in the
main PoF Middleware Java project (eu.forgetit.middleware.component package)
available in the project SVN repository (see Section 8). The dependencies are managed
with Maven. The APIs of the ID Manager are used by all internal components of the mid-
dleware: for example the Collector and Archiver components strongly depend on the ID
Manager to properly collect resources from the Active System and to archive resources
in the Preservation System. When the resource is a collection, an additional request is
sent to the Scheduler, so the different resources in the collection are retrieved in paral-
lel, based on preservation rules based on the concept of Preservation Value (PV) (see
WP3 deliverables). For example, in the current implementation only resources with a PV
above a given threshold are retrieved, the others are discarded. Based on the informa-
tion provided by the ID Manager, the PoF Middleware can return information to the Active
Systems concerning the preservation status of the resources. ID Manager APIs are also
exposed to the other framework components outside the middleware, namely the Active
Systems and the Preservation System, through the middleware REST APIs (see Sec-

c© ForgetIT Page 31 (of 126)

ForgetIT Deliverable D8.6

tion 4.3). Using such APIs, the Active System can trigger and monitor the preservation
of a given resource or can request content re-activation, by providing the CMIS ID (object
ID and repository ID) of a given resource: this information is used by the ID Manager
to create a new ID mapping during preservation preparation or to get the resource ID in
the Preservation System to fetch the preserved content during re-activation. The Preser-
vation System makes use of ID mapping through middleware REST APIs when a new
resource is preserved, to update the ID mapping in the ID Manager internal DB. The ID
Manager is instantiated using Spring XML (see Section 4.2), this is done automatically
at middleware service start up. The connection with the broker to produce and consume
messages is defined in the Apache Camel configuration, which defines the different routes
and includes the ID Manager in the process.

API and I/O Formats The ID Manager provides APIs for creating new IDs and main-
tains the mapping among different IDs. Main methods include generation of new ID and
retrieval of IDs from a internal repository. The APIs of the ID Manager and the associ-
ated classes in the middleware are shown in Figure 17. Currently the IDs used to iden-
tify a given resource are: pofId (middleware internal ID), cmisId and cmisServerId
(CMIS Object ID and CMIS Repository ID), repositoryId (ID generated by the Digi-
tal Repository, DSpace in the current implementation) and storageId (ID generated by
the cloud storage system, OpenStack Swift in the current implementation). As depicted
in Figure 17, the ID Manager provides the methods to generate new unique IDs (using
an internal seed) , to get the whole ID mapping or a specific ID associated to a given
pofId and also to update ID mapping information (for example, when the resource is
moved to cloud storage, a new repositoryId is added to the mapping). A Java in-
ner class IDMapping and an enumerator IdType are used to represent such mapping.
The IDMapping objects are Enterprise JavaBeans (EJB) instances, stored in a pure ob-
ject database, ObjectDB [ObjectDB, 2015], where Create Read Update Delete (CRUD)
operations are implemented using standard Java Persistence API. The ID mappings are
managed by means of get and set methods in order to edit the internal properties corre-
sponding to the given ID. The CRUD operations on the internal object DB are performed
by the DataManager class (see Figure 18), which provides the persistence methods
(based on Java Persistence API) to store IDMapping objects and is also used for persis-
tence of Task objects. The object DB used by the ID Manager to store IDs is also used
to implement part of the Metadata Repository functionalities, as described in Section 5.2.
Different standards are available for identifiers, in the current implementation we make
use of Universally Unique IDentifier (UUID) specification. The ID Manager is invoked in-
ternally during workflow execution, when assigning new IDs to the content processed in
the middleware or when parsing a collection. The connection with the messaging layer is
provided by the Exchange objects, which are passed to the broker using the messaging
API and are managed by the routing engine (see Figure 17). As shown in Figure 17, the
Collector and Archiver classes use the IDManager when the resources are fetched
from the Active System (to create a new IDMapping) or when they are archived (to up-
date the IDMapping). The Collector and Archiver methods are shown in detail in
Figure 22.

Status and Workplan An updated version of the ID Manager has been developed for

Page 32 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

the final prototype. This version provides all required features for ID management. All
planned functionalities have been implemented for this component, the integration with
the messaging layer has been completed and the current status is compliant to the in-
tegration plan described in D8.1. In particular, the final release provides a refinement of
mapping and better representation of the Situation, Collections and Items based on the
information model. The ID Manager code has been updated to the most recent versions
of the Java JDK and ObjectDB.

Documentation and Reference Links The APIs and usage examples are available in
the software documentation, see Section 8 . For Java Persistence API please refer to
official Java documentation, for ObjectDB information can be found on the project web
site [ObjectDB, 2015].

License The component is released as open source under GPL licence, the same used
for the PoF Middleware, see Section 8. According to their website, the ObjectDB software
is available under Open Source licence and used at no cost (including commercially) with
the restriction of maximum ten entity classes and one million entity objects per database
file, using it without these restrictions requires purchasing a licence.

Figure 17: Class diagram for ID Manager component, with associated classes. Association
with the Scheduler is related to process scheduling when creating new IDs.

c© ForgetIT Page 33 (of 126)

ForgetIT Deliverable D8.6

Figure 18: Class diagram for Data Manager: methods based on Java Persistence API are
used for CRUD operations on the object DB. The Data Manager is part of the
ID Manager and Metadata Repository implementation, but is used also by the
Scheduler.

5.2 Metadata Repository

Component Role The Metadata Repository manages metadata extracted or computed
for individual documents and collections and makes them available for other compo-
nents. Examples of such metadata include descriptive metadata, relationship with other
resources, extracted entities or features, context information, Memory Buoyancy (MB)
and PV. The Metadata Repository relies on the fact that all resources are identified by an
unique ID (see ID Manager in Section 5.1), which enables the retrieval of metadata stored
in the repository for a given resource. It is worth noting that the Metadata Repository is
not intended for persistence or long-term storage, since other components in the archi-
tecture are used for this purpose. The Metadata Repository is used to store temporary
information during the execution of specific workflows in the middleware and as such it is
shared among several components.

WP and Deliverables The Metadata Repository was developed within WP8 and was
already included in the previous framework release. The main contributing partner is
EURIX.

Page 34 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Integration and Deployment The implementation of the Metadata Repository was based
on available technologies, since the functionalities provided by this component are limited
and a lot of open source tools can be used. For the implementation we make use of
ObjectDB, as used for the ID Manager (see Section 5.1), since the ID Manager is re-
sponsible for storing metadata information associated to CMIS objects along with the IDs.
Some metadata associated to the resources (retrieved by the CMIS client provided by
the Collector) are stored in such DB: the internal data structures for ID mapping contain
information about the source CMIS repository (associated to a given Active System), the
PV associated to the resource (provided by the Active System), the resource type (sin-
gle resource or collection), the relationship with other resources (in case of collection),
the preservation status (which is updated by the preservation workflow over time). The
information about the resource type and its relationships are retrieved from CMIS object
information before fetching the actual resources. Some components, such as the Collec-
tor and the Archiver, currently store the temporary metadata information also in their own
internal DB or on the file system, while other components, such as the Contextualizer and
the Extractor, just use the file system.

API and I/O Formats The information stored in ObjectDB only requires Java Persistence
API and the data structure is based on EJB technology. The EJB objects are then mapped
to other formats, such as XML or JSON, to fulfill specific requirements. The CRUD oper-
ations are performed by the DataManager class, shown in Figure 18.

Status and Workplan The current solution for the Metadata Repository provides all ex-
pected functionalities.

Documentation and Reference Links Methods and examples for the DataManager to
store objects in the ObjectDB are available in the software documentation, see Section 8.
For Java Persistence API please refer to official Java documentation, further information
about ObjectDB can be found on the project web site [ObjectDB, 2015].

License The source code of this component is released as open source, as part of the
PoF Middleware code. According to their website, the ObjectDB software is available as
open source and used at no cost (including commercially) with the restriction of maximum
ten entity classes and one million entity objects per database file, using it without these
restrictions requires purchasing a licence.

5.3 Scheduler

Component Role The Scheduler is responsible for managing and organizing middleware
activities, by receiving and dispatching requests for the different workflows and asyn-
chronous processes and by interacting with the messaging infrastructure. The Scheduler
triggers the different workflows, either by receiving input from other PoF Middleware com-
ponents or by executing scheduled activities. The other middleware components interact
with the Scheduler during the execution of complex processes. A typical example of such
interactions is provided by the Collector: when retrieving information about the resources

c© ForgetIT Page 35 (of 126)

ForgetIT Deliverable D8.6

in the Active System, the request for actual resource retrieval (or the retrieval of multiple
resources in a collection) is sent to Scheduler, which creates the appropriate Tasks to
be executed asynchronously. Another example is related to the re-activation of content
archived in the Preservation System, which is scheduled by creating a specific Task. The
Scheduler is also invoked through the middleware REST APIs: based on the request type,
different Tasks are executed.

WP and Deliverables Component developed within WP8, since it is strongly related to
the middleware messaging layer. The main contributing partner is EURIX. The first prelim-
inary version was described in deliverable D8.3 [Gallo et al., 2014], a major improvement
was achieved for the second prototype, when the Apache Camel routing engine was in-
troduced (see D8.4 [Gallo et al., 2015a]) .

Integration and Deployment The Scheduler is written in Java and is included in the main
PoF Middleware Java project (eu.forgetit.middleware.component package). In
the first version a WorkflowManager class was used to bridge the gap between the web
server and the messaging layer, preserving loose coupling, but in the second and third
release this has been removed, since this functionality is now provided by Apache Camel,
which acts as a rule-based routing engine for the messages in the broker and there-
fore is used for workflow definition and management (see Section 4). The Scheduler
class is depicted in Figure 19, along with associated classes. The Scheduler uses the
ConfigurationManager to get information about the middleware configuration (broker
URL, queues, remote services, DB connection, etc.) and the DataManager to perform
CRUD operations on the object DB described above and store information about Tasks.
The Task class and two Java enumerators, TaskType and TaskStatus, are used. The
TaskStatus contains the possible states for a Task, while TaskType is mapped to the
different workflows. Currently the Scheduler supports the Preservation Preparation and
Re-activation workflows defined in the PoF Reference Model (see Section 3). The Task
class is a EJB with different properties, such as the Task identifier, type, start time and
last completed step in the workflow. The Task body contains the results of the workflow,
typically as a JSON object, and is mainly used for monitoring purposes. The information
about each Task is stored in the object DB and is returned by the middleware through
specific REST APIs, described in Section 4. The Task identifier can be used as a token
for monitoring the progress of a given Task. The Scheduler is instantiated using Spring
XML (see Section 4.2), this is done automatically at middleware service start up. The
connection with the broker to produce and consume messages is defined in the Apache
Camel configuration, which defines the different routes and includes the Scheduler in the
process.

API and I/O Formats The Scheduler APIs allow the scheduling of processes based on
time and events, to request status information and to delete scheduled events. A subset of
these APIs has been already implemented and is shown in Figure 19. The Scheduler cur-
rently exposes APIs for scheduling Tasks based on requests received by the middleware
REST web server or by scheduled activities defined within Apache Camel using Spring
XML configuration. According to the request type, the Scheduler can trigger different
workflows.

Page 36 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Status and Workplan Compared to the first release, the current version has been im-
proved and now leverages the routing engine implemented by Apache Camel. Starting
from the second release, the support for Task management has been added and a more
flexible approach for triggering workflows and processes is used. The Scheduler provides
public APIs for sending messages and for creating, deleting and updating Tasks. The
workflow logic is no more hard-coded in the Scheduler code, since it is dynamically con-
figured using Spring XML. The support for scheduled activities is important to implement
missing workflows defined in the Evolution Layer of the PoF Reference Model. These
workflows include periodic preservation tasks, monitoring of resources and associated
PV and other time-dependent activities. It is worth noting that the current implementation
already supports such periodic processes using Spring XML: a dummy periodic process
has been defined to test the stability of the routing engine (see Section 4.2), this activity
simply triggers the Scheduler and provides a control message. This mechanism is also
used for all periodic tasks, such as automatic preservation, which periodically checks the
status of resources.

Documentation and Reference Links The APIs and usage examples are available in
the software documentation, see Section 8.

License The component is released as open source under GPL licence, the same used
for the PoF Middleware, see Section 8.

Figure 19: Class diagram for Scheduler component, with associated classes.

c© ForgetIT Page 37 (of 126)

ForgetIT Deliverable D8.6

5.4 Extractor

Component Role The Extractor takes as input the original media items (e.g. a text, a
video, an image collection or a collection of texts) and extracts information that is poten-
tially useful not only for the subsequent execution of the Condensator (see Section 5.5),
but also for other components or functionalities of the overall framework (e.g. search). Re-
garding visual information analysis methods, the Extractor implements: annotation with
labels, near duplicate detection, image quality assessment (aesthetic and non-aesthetic)
and face detection and clustering for images and videos. Text analysis methods cover
basic linguistic processing, which is fed into the extraction of named entities and plays
a role in the Condensator. Also, the Extractor implements a method that associates text
and image items by sorting the images of an image collection based on their relevance
with the given text.

WP and Deliverables The Extractor is developed within WP4, the contributing part-
ners are CERTH, USFD, TT. The different technologies that are required for realizing
the Extractor were reviewed in deliverable D4.1 [Papadopoulou et al., 2013]. Text anal-
ysis tools were initially introduced in D4.2 [Papadopoulou et al., 2014] and further de-
veloped in D4.3 [Solachidis et al., 2015], in which GATE [Cunningham et al., 2011] was
also presented. Image analysis tools (image quality assessment, face detection, and
feature extraction and concept-based image annotation) were initially presented in deliv-
erable D4.2 [Papadopoulou et al., 2014]. Near duplicate detection, face clustering and
multi-user time synchronization as well as updated versions of concept-based image an-
notation and face detection were presented in D4.3 [Solachidis et al., 2015]. Finally, in
D4.4 [Solachidis et al., 2016], image quality assessment, image annotation, face detec-
tion and clustering and near duplicate detection have been updated and also extended to
videos. In the same document, the text-image association method is also described.

Integration and Deployment All image and video analysis Extractor sub-components
have been deployed as REST services running in CERTH servers. The text extraction
components have been developed as GATE [The University of Sheffield, 2016] applica-
tions. GATE enables the rapid deployment and integration of GATE applications as web
services. These can either be embedded directly into other Java applications and compo-
nents or accessed as REST services using GATE WASP, as detailed in D4.3. Additional
information about GATE is also available in [Cunningham et al., 2011]. The integration of
the remote service providing Extractor functionalities is achieved using a Service Ac-
tivator Enterprise Integration Patterns (EIP) (see Section 4.1.2): the service details are
hidden to the other components. The Extractor implementation is made up of two main
classes: the Extractor class exposes the image and video analysis methods and other
methods to exchange messages with the broker, while the ExtractorServiceCon-
sumer class provides the methods to interact with the REST service hosted by CERTH,
which provides the actual image and video analysis methods. The Extractor class di-
agram is depicted in Figure 20. The Extractor method responsible for communicating
with the messaging layer, consuming messages containing information about images and
videos to be processed, makes use of Exchange class, part of Apache Camel API. The

Page 38 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Extractor class parses the message and sends the appropriate request to the CERTH
service through the ExtractorServiceConsumer class. An excerpt of the Extrac-
tor code is shown in Listing 4. The ExtractorServiceConsumer class converts the
received parameters into a REST request and then parses the response of the CERTH
server, returning the information to the Extractor class. The main advantage of using a
Service Activator pattern is the possibility to hide the details of the RESTful service
(the response can change or the URL can be updated, for example) and also to deal with
the issues related to web services, such as latency or unavailability of the service, just
to name a few. The information about the CERTH service is stored in a configuration file
and retrieved using the ConfigurationManager class. The execution of a particular
image/video analysis method is supported by the use of a Java enumeration, Method-
Type. As shown in Figure 20, the progress of each image/video analysis task is managed
by the Scheduler. The integration of the Extractor component in the middleware workflows
is described in Section 4.

API and I/O Formats The REST APIs are documented in D4.4. The response of the
web server is returned in XML format. For example, the image quality assessment takes
as input an image (or a set of images) and returns its visual quality score by examining
the presence of visual artifacts such as low contrast, noise, blur, etc., while the image
annotation calculates the confidence scores for a set of concepts which indicate how
much each concept is related to the image, taking as input an image (or a set of images)
and returning for each image a vector that contains the confidence scores for all the
concepts.

Status In the first framework release, the Extractor contained two image analysis sub-
components, for concept detection and image quality assessment. The second version
had an updated concept detection method and two new methods: near duplicate image
detection of an image collection and face detection. Furthermore, all implementations
were written in C++ and were much faster than the previous ones. In the current version,
the methods have been updated and also support video analysis. More specifically, image
annotation, near duplicate detection, face detection and face clustering have been up-
dated; and the aesthetic image quality assessment, as well as text and image association
methods have been added. Regarding video analysis, the Extractor supports shot and
scene segmentation, aesthetic and non-aesthetic quality assessment, annotation with la-
bels, near duplicate detection and face detection and clustering. The text components
are integrated via GATE WASP (see D4.3), allowing for an infinite variety of applications
to be made available via the Extractor and integrated within the use case tools.

Documentation and reference links Additional information about the Extractor com-
ponent and the RESTful web service hosted by CERTH can be found in deliverable
D4.4 [Solachidis et al., 2016], which also provides some usage examples.

License CERTH libraries are Copyright c©2013-2016 CERTH, third-party libraries are
available under open source (BSD) or as patented code in some countries. Some of the
image analysis sub-components make internal use of third-party software and libraries,
such as OpenCV (BSD license) and Liblinear (Copyright c©2007-2015 the LIBLINEAR

c© ForgetIT Page 39 (of 126)

ForgetIT Deliverable D8.6

Project). GATE (and associated software) [The University of Sheffield, 2016] is available
under an open source license, mostly GNU LGPL v3, although some code is covered by
the GNU AGPL.

Figure 20: Class diagram for Extractor, with associated classes.

Page 40 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

5.5 Condensator

Component Role The Condensator takes as input the output of the Extractor (see Sec-
tion 5.4), in order to generate a condensed output of text and media items. Based on
this input, the Condensator performs further text, image and video analysis tasks whose
results are specific to the condensation process and thus of no need to other parts of
the ForgetIT system. No feedback loop from the Condensator back to the Extractor is
performed (thus, the Condensator can only be called after the Extractor has been exe-
cuted for the processed data, and the Condensator results are not fed in any way back
to the Extractor). The final output of the Condensator are the condensed media items or
collections (subset of media items, condensed text etc.). Regarding images/videos, the
current release contains a clustering method that is able, based on image/video features
and metadata (capture time and GPS location) to cluster them into separate events and
then to extract a representative image/video from each cluster in order to deliver a con-
densed version of the initial collection. For what concerns text, the Condensator provides
single and multi-document summarization.

WP and Deliverables The Condensator is developed within WP4, the contributing part-
ners are CERTH, USFD, TT. The different technologies that are required for realizing
the Condensator were reviewed in deliverable D4.1 [Papadopoulou et al., 2013]. The text
summarization methods and the image clustering methods are presented in deliverables
D4.3 [Solachidis et al., 2015] and D4.4 [Solachidis et al., 2016].

Integration and Deployment The image and video clustering sub-components in the
Condensator has been deployed as REST services running in CERTH servers. The text
extraction components have been developed as GATE [The University of Sheffield, 2016]
applications. These can either be embedded directly into other Java applications and
components or are accessed as REST services using GATE WASP as detailed in D4.3.
Similarly to the Extractor, the integration of the remote service providing Condensator
functionalities is achieved using a Service Activator Enterprise Integration Patterns
(EIP) (see Section 4.1.2). The Condensator implementation is made up of two main
classes: the Condensator class exposes the image clustering methods and other meth-
ods to exchange messages with the broker, while the CondensatorServiceConsumer
class provides the methods to interact with the REST service hosted by CERTH, which
provides the actual image/video clustering methods. The Condensator class diagram is
depicted in Figure 21. The Condensator method responsible for communicating with the
messaging layer, consuming messages containing information about images/videos to be
processed, makes use of Exchange class. As described for the Extractor, the Conden-
sator class parses the message and sends the appropriate request to the CERTH ser-
vice through the CondensatorServiceConsumer class, which converts the received
parameters into a REST request and then parses the response of the CERTH server,
returning the information to the Condensator class. The information about the CERTH
service is stored in a configuration file and retrieved using the ConfigurationManager
class. As shown in Figure 21, the progress of each Condensator task is managed by the
Scheduler.

c© ForgetIT Page 41 (of 126)

ForgetIT Deliverable D8.6

API and I/O Formats The REST APIs are documented in D4.4. The response of the web
server is returned in XML format, as done for the Extractor.

Status In the first framework release, the Condensator contained an image clustering
method that was using only image visual features. The second version has an updated
clustering method that employs more image features and doesn’t require the number of
clusters as input. Furthermore, this implementation is in C++ and it is much faster than
the previous one. The current version contains an updated clustering method for images
and a new method for videos. The text components are integrated in the same way as
integrated in the Extractor. Single document summarization was supported in the Year
2 version, while it has been extended to multi-document summarization in the current
version.

Documentation and reference links Additional information about the Condensator com-
ponent and the RESTful web service hosted by CERTH can be found in deliverables
D4.3 [Solachidis et al., 2015] and D4.4 [Solachidis et al., 2016], which also provide some
usage examples.

License CERTH libraries are Copyright c©2013-2016 CERTH, third-party libraries are
available under open source (BSD) or as patented code in some countries. Some of the
image analysis sub-components make internal use of third-party software and libraries,
such as OpenCV (BSD license) and Liblinear (Copyright c©2007-2015 the LIBLINEAR
Project). GATE (and associated software) [The University of Sheffield, 2016] is available
under an open source license, mostly GNU LGPL v3, although some code is covered by
the GNU AGPL.

5.6 Collector/Archiver

Component Role The Collector/Archiver is the framework component which communi-
cates and exchanges data with both the Active Systems (Collector) and the Preservation
System (Archiver). In the Preservation Preparation workflow (see Section 3), the Col-
lector/Archiver is responsible for automatically fetching digital content from Active Sys-
tems (Information Systems), assemble content and metadata to create a Submission
Information Package (SIP), ready for transfer to receiving Preservation System. This
component automatically fetches content, metadata, and physical/logical structure from
Active System using the CMIS protocol. At the end of the Preservation Preparation pro-
cess, the Collector/Archiver assembles extracted additional metadata and content to cre-
ate a SIP based on the eARD specification5 and makes use of standardized metadata
schemas adapted to receiving ingest functional entity in the Preservation System. The
Collector/Archiver creates the SIP structure based on the package structure defined in
the Preservation Broker Contract (PBC). When the SIP is built, the results from all com-
ponents (secondary products or transformed resources, as well as additional metadata
files) are collected. This process also includes file identification and computation of fixity

5eARD - http://xml.ra.se/e-arkiv/eard.html

Page 42 (of 126) www.forgetit-project.eu

http://xml.ra.se/e-arkiv/eard.html

Deliverable D8.6 ForgetIT

Figure 21: Class diagram for Condensator, with associated classes.

checksums. The Collector/Archiver is also in use in the Re-activation workflow where digi-
tal content is brought back from Preservation System to use in Active System. Resources
in the Preservation System can be retrieved using the Collector/Archiver, which interacts
with the ID Manager to get information about the resource IDs (see Section 5.1). In this
process this component is responsible for uncompressing received DIP and restructuring
it according to Active System needs, which should be defined in the Preservation Broker
Contract. During the processing of Preservation Preparation and Re-activation workflows,
the Collector/Archiver interacts with the PoF Middleware workflow manager (ESB) using
the REST architectural style.

WP and Deliverables The Collector/Archiver component is developed within WP5, part-
ners responsible are LTU and EURIX. The first version of Collector/Archiver has been
described in D5.2 [Nilsson et al., 2014]. The second version, integrated in the second
prototype, is described in deliverable D5.3 [Nilsson et al., 2015]. The current (third) ver-
sion is described in deliverable D5.4 [Nilsson et al., 2016].

Integration and Deployment The Collector/Archiver is implemented by different software
components. Two Java classes are deployed in the middleware Java code, Collector
and Archiver. These classes provide methods for sending and consuming messages,
using the Exchange class defined in Apache Camel APIs, and also methods for fetching
content from the Active System and for importing content into the Preservation System.
The core functionalities of the Collector/Archiver are deployed as a separate RESTful

c© ForgetIT Page 43 (of 126)

ForgetIT Deliverable D8.6

web service running in the testbed environment, along with the middleware code. In or-
der to interact with this service, a Service Activator pattern (see Section 4.1.2) is
used and three classes have been defined: for the Collector functionality, the Collec-
torServiceConsumer communicates with the Collector REST APIs to trigger content
and metadata retrieval from the Active System (see Figure 22); for the Archiver functional-
ity, the DigitalRepositoryServiceConsumer class communicates with the Archiver
REST APIs to package the content and with the Digital Repository REST APIs to ingest
the SIPs and get information about archived content, while the CloudStorageService-
Consumer communicates with the Preservation-aware Storage System to store content
in the SIP (see Figure 23). The Preservation System is described in Section 7, where
further details about the Digital Repository and the Preservation-aware Storage System
are provided. As depicted in Figure 22 and Figure 23, the Collector/Archiver uses the
ID Manager to get information about IDs and to update the ID mappings, while the man-
agement of Collector/Archiver tasks is performed by the Scheduler. The activation of this
component in the two main workflows is described in Section 4, where we also describe
the use of Spring XML for workflow definition and for instantiating each component.

API and I/O Formats The Collector/Archiver exposes REST APIs which are documented
in deliverable D5.4 [Nilsson et al., 2016].

Status and Workplan The third version of the Collector/Archiver has been improved and
currently supports different metadata schemas, automatic fetching of additional contex-
tual metadata and extraction of technical metadata, support for identification of file for-
mats, extraction of file format identifiers based on PRONOM Persistent Unique Identifier
(PUID), that provides the ability to integrate with the PRONOM format registry6, support
for management of physical and logical content structure from CMIS repository on the
Active System, integration in the middleware with the implementation of REST interfaces
for fetching, packaging and re-activation features, implementation of process logging to
support functional validation and workflow redirection at errors and exceptions (using al-
ternative workflows), and utilisation of the Preservation Broker Contract from the Context-
aware Preservation Manager (CaPM) component (see Section 5.10) for configuring the
Collector/Archiver.

Documentation and Reference Links Documentation of the component architecture
and its interaction with internal and external components is in preparation, the description
of the current version is available in deliverable D5.4 [Nilsson et al., 2016].

License The component is released as open source under GPL licence, the same used
for the PoF Middleware, see Section 8.

5.7 Forgettor

Component Role The Forgettor is responsible for basic operations in the information
value assessment. It takes information of the resources in the Active System, applying

6PRONOM - http://www.nationalarchives.gov.uk/PRONOM

Page 44 (of 126) www.forgetit-project.eu

http://www.nationalarchives.gov.uk/PRONOM

Deliverable D8.6 ForgetIT

Figure 22: Class diagram for the Collector, with associated classes.

different methods in the managed forgetting framework, and provides outputs about the
two values: MB and the PV for each resource. These values will then be used by other
components (e.g. Collector, Archiver, or Contextualizer). This component consists of
three major sub-components: MB assessor, PV assessor, and the Policy Engine. The
MB assessor and PV assessor are responsible for computing the MB and PV in an auto-
mated or semi-automated fashion. These sub-components implement the novel managed
forgetting methods that are developed within the WP3. The Policy Engine incorporates
human preferences (individual or organizational) to the outputs given by the assessors,
adapting them to specific scenarios defined by humans. The values of the Policy Engine
will be used as the final output of the Forgettor that are exchanged to other components.
Sub-components in the Forgettor are interfaced with other components via web services,
web-based user interface, or standalone java packages and are called periodically as a
background process.

WP and Deliverables This component is developed in the WP3, with contributions from
LUH, DFKI, CERTH, TT. The foundations of the MB / PV assessors are described in
deliverable D3.1 [Kanhabua et al., 2013]. The first prototype of the MB assessor is de-
scribed in deliverable D3.2 [Kanhabua et al., 2014], and is followed up by a case study
for the evaluation in deliverable D3.3 [Kanhabua et al., 2015], which discusses the Policy
Engine design and implementation. Deliverable [Zhu et al., 2016] reports in details the
PV assessors for both PIMO and PV active systems.

c© ForgetIT Page 45 (of 126)

ForgetIT Deliverable D8.6

Figure 23: Class diagram for the Archiver, with associated classes.

Integration and Deployment The three sub-components are developed separately within
WP3. Due to the difference in privacy constraints and architecture, the MB and PV as-
sessors are deployed and integrated differently for the PIMO and TYPO3 active systems.
For the PIMO, the assessors are developed as standalone Java packages in the active
system, so as to preserve the privacy of resources in the experiment phase. The PV
assessor for the PIMO system currently works with photo data, i.e. taking one collection
of photos as input and returns the PV for each photo in the collection. The results are
exchanged with the PoF framework via Web Services API. For the TYPO3, the two asses-
sors are deployed directly in the middleware and constitutes part of the PoF framework.
This is because TYPO3 data (FishShop case study, see D10.3) has less strict privacy
requirements, making it ideal for prototyping the true integration of the assessors in the
middleware. The method implemented by this sub-component has been described in
detail in D3.4 [Zhu et al., 2016]. The Policy Engine is interfaced with web-based applica-
tions, as described in D3.3 Section 4 [Kanhabua et al., 2015].

API and I/O Formats The interfaces and input as well as results format for the Policy
Engine are described in D3.3 Section 4. For the MB assessor, the experimental APIs are
described in Appendix E.

Status and Workplan The Forgettor component is currently under development accord-
ing to the plan in deliverable D8.1 [Gallo et al., 2013]. A new version will be integrated in
the next release of the PoF Framework. Below reports the ongoing status of the develop-
ment of the two sub-components.

Page 46 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Status of Policy Engine:

The current prototype of the Policy Engine consists of two main parts: The computa-
tional part facilitates the creation, management and exploration of policies, and the model
part consists of domain expert-assisted policies, data models for specific scenarios. Cur-
rent contributing partners of the two parts include L3S and DFKI. The data models and
rules are provided by domain experts who operate the Active Systems, and embedded as
POJO classes in the backend of the two applications. For the moment, information about
digital documents are mirrored at the local database of the Forgettor to test the work-
flow. Next step would be exchanging the information via web services between the active
systems and the Policy Engine, so as to preserve the privacy and support continuous
integration.

Status of MB and PV Assessors:

The sub-components for assessing MB and PV values rely on the activity history of users
in the information space (his Semantic Desktop or TYPO3 user log), as well as the on-
tological knowledge of the resource, including their structures and its relationships with
other resources. In the middleware layer, the components are used as a service by the
clients (PIMO) to numerically assess a resource, or as a local component (TYPO3). The
computation can be triggered manually or periodically upon the arrival of the new logs.

The MB or PV assessors for the PIMO data have two parts. The first part serves as a
background job that periodically gets triggered and estimates the resources’ MB values.
The results are then cached in a database. The second part, which is deployed directly
to the middleware, is a web service repository that dispatches requests about MB values
to the database and return results for respective context (time, persons who question,
...). For the TYPO3 data, these two parts of the assessors are directly deployed as local
components in the middleware.

Documentation and reference links Additional information about the component can
be found in deliverable D3.2 Section 2.2-2.3 [Kanhabua et al., 2014]. The data model
and algorithms for the MB / PV assessor of TYPO3 data is described in D3.4 (Section
5.2) [Zhu et al., 2016]. The computational aspects of the PV assessor of the PIMO data
is described in D3.4 (Section 7.2) [Zhu et al., 2016]. The Policy Engine is described in
details in D3.3 (Section 4) [Kanhabua et al., 2015].

License: The policy engine and the advanced interface is developed using JBoss Drools
Business Rule Management system7 under the licence ASL 2. The basic interface is de-
veloped using Google Web Toolkit8 under the Apache licence 2.0. The other components
are available under GNU License GPL v3.0, Creative Commons License 3 and Apache
License 2.0. Third party tools used in the MB / PV assessors are OpenCMIS API (Apache
license 2.0) and Weka machine learning toolkit (GNU General Public License).

7Drools - http://www.jboss.org/drools
8Google Web Toolkit - http://www.gwtproject.org

c© ForgetIT Page 47 (of 126)

http://www.jboss.org/drools
http://www.gwtproject.org

ForgetIT Deliverable D8.6

5.8 Contextualizer

Component Role The Contextualiser takes as input the original media items (e.g. a
text, an image, a collection of texts or a collection of images) and output from previous
components (mainly the Extractor, see Section 5.4) and determines the wider context
within which the item resides [Gorrell et al., 2015]. In conjunction with the Context-Aware
Preservation Manager (see Section 5.10) the original item is then packaged for preserva-
tion along with the context information which enables the complete understanding of the
item.

WP and Deliverables This component is developed within WP6, the contributing partners
are USFD, LUH, CERTH, LTU, IBM, and DFKI. Deliverable D6.3 [Greenwood et al., 2015]
describes the current status of the components and their integration within the PoF Mid-
dleware. Specifically three components for contextualization (two focused on text and one
on images) are described alongside one component for the re-contextualization of text.

Integration and Deployment The prototype version of the contextualization via disam-
biguation component has been deployed as a REST service integrated into the PoF Mid-
dleware, based on GATE [The University of Sheffield, 2016]. The class diagram for the
Contextualizer is shown in Figure 24, where the associated ContextualizerService-
Consumer class is also shown. Also for the Contextualizer we make use of the Service
Activator EIP (see above for further details).

API and I/O Formats A number of the contextualization components are fully integrated
within the PoF Middleware and all are accessible to other consortium members directly in
some form (usually as a RESTful service).

Status and Workplan The workplan for this component is focused on three main ar-
eas; use case integration, context evolution, and evaluation. Updated versions taking
these three points into account will be documented and delivered as part of deliverable
D6.4 [Greenwood et al., 2016] by the end of the project.

Documentation and Reference Links Additional information about the Contextualizer
is available in deliverable D6.3 [Greenwood et al., 2015]. A demo version of one of the
text based approaches to contextualization can also be accessed on GATE services web
site9.

License CERTH libraries are Copyright c 2013-2015 CERTH, third-party libraries are
available under open source (BSD) or as patented code in some countries. Some of the
image analysis sub-components make internal use of third-party software and libraries,
such as OpenCV (BSD licence) and Liblinear (Copyright c 2007-2015 the LIBLINEAR
Project). GATE (and associated software) is available under an open source licence;
mostly GNU LGPL v3, although some code is covered by the GNU AGPL.

9GATE Contextualization Service - http://services.gate.ac.uk/forgetit/
contextualization/

Page 48 (of 126) www.forgetit-project.eu

http://services.gate.ac.uk/forgetit/contextualization/
http://services.gate.ac.uk/forgetit/contextualization/

Deliverable D8.6 ForgetIT

Figure 24: Class diagram for Contextualizer, with associated classes.

5.9 Navigator

Component Role The Navigator component provides the basic access to the preserved
contextualized items. This allows access regardless of the presence of an Active System.
This comprises metadata search which may take place within the archive (or object store)
as well as search of the context information, the indexes for which are kept within the
middleware for the purpose of efficient access. Different search approaches have been
analysed in the project. In particular, we identified three different search types: Forget-
ful Search, Situation Search and Context Aware Search (see D6.4 Section 6 for further
details). In the final version the main implemented functionality of the Navigator is the
Situation Search, based on the capability to index metadata related to Situations and Col-
lections in the middleware. Other search approaches have been investigated in WP3 and
WP6.

WP and Deliverables The Navigator is a product of WP6 and WP8, a preliminary version
was implemented in the second prototype (see D8.4 [Gallo et al., 2015a]).

Integration and Deployment The updated version of this component is now integrated
within the PoF Middleware and is part of the middleware Java code.

API and I/O Formats The Navigator code available in the middleware provides APIs for
the Situation Search, in order to index and search Situations and Collections using a Solr
index with a dedicated core. The component is written in Java.

Status and Workplan A preliminary Navigator component was developed for the inte-
gration with the final prototype. It currently includes a component to index and search

c© ForgetIT Page 49 (of 126)

ForgetIT Deliverable D8.6

Situations and Collections. Among the different search types mentioned above, the cur-
rent implementation in the middleware only the Situation Search is supported, while for
the other types preliminary software components have been developed in WP3 and WP6.

Documentation and Reference Links The APIs for the Situation Search are described
in the code documentation, while for a general overview of Situation Search and other
types please refer to D6.4 [Greenwood et al., 2016].

License The licence of the Java component implemented in the middleware is GPL.
The implementation leverages Apache Solr which is available as open source under the
Apache license.

5.10 Context-aware Preservation Manager

Component Role The Context-aware Preservation Manager (CaPM) is responsible for
supporting the PoF Middleware activities by the creation of a submission agreement, a
Preservation Broker Contract (PBC), which needs to be established between the producer
information system (active system) and the digital preservation system (DPS). The PBC is
an XML-file containing specifications and regulations in the form of structured information
and rules that upholds the agreed-on structure and content of information packages and
execution paths in the PoF middleware. The CaPM-PBC is always part of the execution
of a preservation preparation workflow defined in D8.5 [Gallo et al., 2016] by receiving
and dispatching requests from other PoF middleware components and by interacting with
the PoF workflow infrastructure. A typical example of such interaction is provided by the
Collector component: when retrieving objects from the active system it will always inter-
act with the CaPM-PBC to identify from which active system it will fetch the objects by
the retrieval of connection end-point information, if there are instructions regarding the
fetch such as if physical/logical structure should be included, and if fetched objects is
according to expectations regarding anticipated mime types, and that limit values for a
single fetch is not exceeded. Another example is when the Archiver component creates
the submission information package: the Archiver retrieves information about metadata
standards to use. The Archiver also retrieves information from the PBC about the preser-
vation organization, contact information, systems etc. used as provenance metadata. It
also retrieves information about the package folder structure, definition of fixity algorithm,
and the connection endpoint of the preservation system. Another example is related to
the re-activation of content archived in the Preservation System, the CaPM-PBC provides
information such as if there should be a migration at access and the migration path for a
specific mime-type.

Besides being part of the preservation preparation and re-activation workflows the CaPM-
PBC supports the scheduled transformation mechanism executed by the Preservation
Aware Storage System [Chen et al., 2016] by providing agreed rules on the management
of original objects and any copies. The CaPM-PBC may also contain information about
agreed management of copies in the preservation system, as well as mechanisms regard-
ing integrity checks, and how events in the preservation system should be communicated

Page 50 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

back to the active system. This information is not intended to be executed on-the-fly in
the preservation system, instead used as basis for manual configuration of mechanisms
in the preservation system. The CaPM-PBC is invoked through a REST API based on the
request path; different information from a specific PBC, identified by its ID, is retrieved.
Another responsibility for the CaPM component is to support monitoring of DP activities
through Activity Logging (AL) executed by other PoF middleware components. A typical
example for the use of the CaPM-AL is to check status of the execution of activities in the
preservation preparation workflow; the Archiver checks the logs created by the CaPM-AL
to ensure that activities that should be executed according to the PBC has been carried
out without errors. If an error is detected it sends a message to the PoF workflow man-
ager. A REST API could also be invoked to request information from the CaPM-AL. Due
to it’s location in the middle of the interaction between active systems and preservation
systems, the CaPM is also able to keep track of every object that passes through the
PoF middleware. This functionality is referred to as Preservation Planning Support (PPS)
and provides a bi-directional identification of systems involved, identified by the PBC, and
the identification and logging of mime type versions that are part of an interaction. This
information is useful as input to different preservation planning scenarios for detection
of file format obsolescence and decision support in the choice of target file format in a
migration scenario. This information is available by a REST API as a JSON output which
can be imported by any preservation system and also provided via a web GUI through
the CaPM-PPS.

WP and Deliverables This component is developed within WP5, the contributing partners
are LTU, EURIX, IBM, DFKI and dkd. Deliverable D5.4 [Nilsson et al., 2016] describes its
capabilities and placement in the PoF Middleware workflows.

Integration and Deployment The component is deployed in the PoF Middleware, and
expose a number of REST services to be used by other components. The actual use of
these services is not as high as it could be, mainly due to that CaPM has been developed
after many other components since it was not in the original plan.

API and I/O Formats The CaPM component is written in Java and make use of avail-
able technologies. For the implementation of permanent store of data we make use of
MySQL as RDBMS and a mix of JDBC and Persistence API for the communication with
DB. The interaction with data stored in XML is done by the use of a java API for xml,
JavaScript Object Notation (JSON) simple API, and Jersey RESTful API (JAX-RS). The
logging mechanism is supported by the Apache log4j API. The web-GUI provided by the
CaPM-PPS is implemented by the use of PrimeFaces and JSF API and the DB commu-
nication uses Java Persistence API. The classes part of the CaPM component is build to
the CaPM.jar software package and the capmmimeviewer.war.

Status and Workplan The current solution for the Context-aware Preservation Manager
provides expected functionalities within the project. The integration of it still needs im-
provements; which for example could mean different execution paths in the (PoF) Middle-
ware based on information from the Preservation Broker Contract. Further development
will take place outside the scope of this project.

c© ForgetIT Page 51 (of 126)

ForgetIT Deliverable D8.6

Documentation and Reference Links A preliminary description of the Context-aware
Preservation Manager is available in deliverable D8.1 [Gallo et al., 2013], where the role
of the component in the framework is described, and in deliverable D8.2 [Gallo et al., 2015b],
where the role of the component in the PoF Reference Model is explained. A preliminary
design of the prototype is described in deliverable D5.3 [Nilsson et al., 2015], and deliv-
erable D5.4 [Nilsson et al., 2016] holds documentation of the implemented version.

License The component is released under Open Source licence, the same used for the
PoF Middleware, see Section 8.

Page 52 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

6 Active Systems

In this Section we describe the current development of the two main user applications
developed and tested in the project, the Semantic Desktop for the personal preservation
and TYPO3 for the organizational preservation.

Both systems have been already described in detail in WP9 and WP10 deliverables, re-
spectively. In this document we summarize the main achievements for the integration with
the PoF Middleware.

Since the CMIS standard is crucial in our approach, we also describe how other user
applications (e.g. developed in the other WPs for demonstration purposes) can be seam-
lessly integrated with the framework using CMIS.

6.1 Semantic Desktop

The Personal Preservation Pilots (see D9.3 [Maus et al., 2014], D9.4 [Maus et al., 2015],
and D9.5 [Maus et al., 2016]) use the integration with the PoF Framework to provide ser-
vices from ForgetIT. For full documentation of the Pilots and services used from ForgetIT,
please refer to the mentioned deliverables.

In the following, the changes and enhancements in the SD/PoF-Adapter compared to the
second release are described.

In the course of realizing Pilot II, the adapter to the PoF Middleware has been extended
with following features.

The functionality of automatic preservation by the PoF, i.e., the PoF – namely the Forgettor
– decides on what and when to preserve, required some extensions of the REST-API and
the SD/PoF-Adapter.

First, as the Active System Semantic Desktop does the information value assessment
both for MB and PV on the PIMO Server (see D9.4 for details), the PoF must be informed
on the computed values for resources. Therefore, an interface method now allows to
inform the PoF on updates of PV categories (gold, silver, bronze, wood, ash). This method
allows for a bulk update of such values to reduce communication overhead.

Second, the PoF needs to be informed about the user’s preferences on preservation.
Therefore, an interface method allows to transfer and update the user’s Preservation Bro-
ker Contract (PBC). This contract is described in D5.4 [Nilsson et al., 2016] and submitted
in the method as a file. The current prototype does not (yet) cover all data for such a PBC,
but restricts to key-value pair of PV category and Preservation Level (defaults are pre-
mium, standard, basic, none) and name and email-address of an alternative contact
person. This data is entered by the user in a dedicated interface of the Semantic Desktop
(see D9.4).

c© ForgetIT Page 53 (of 126)

ForgetIT Deliverable D8.6

Finally, the technical handling of the context information accompanying a resource via the
CMIS interface has been extended.

Due to the size restriction of CMIS attributes, context information from the PIMO (which
will be archived as Local Context) is now transferred as separate cmis:Document. The
document’s ID is set in the forgetit:context attribute of the respective cmis:Item.

Technically, the context information export is an excerpt from the PIMO semantic graph
describing the resource in the PIMO and its connection to other things such as topics for
a document or persons attending an event. The format used for the exported excerpt is
RDF/S using the PIMO Ontology RDF Schema and Turtle10 as exchange format.

This interface was enhanced by handling collections of resources and using the additional
context delivered by the SD/PoF Adapter.

6.2 TYPO3

The Organizational Preservation Pilot Application V1 (see D10.2 [Dobberkau et al., 2015a]
and D10.4 [Dobberkau et al., 2016]) uses the CMIS standard to be able to provide con-
tent - originally restricted to use within TYPO3 only - to other systems, especially at this
point the PoF Framework. Thus TYPO3 only acts as a data-deliverer, exemplifying the
point that any system supporting CMIS could act as an Active System in the PoF Frame-
work. TYPO3 is using an intermediary CMIS repository, as it is not providing a repository
on its own. Relevant TYPO3 data structures are transformed to the CMIS standard as
following: the page tree consists of cmis:folder objects and each content element on
a page (text, image, video ...) is a cmis:document. Assets connected to these content
elements are created as an CMIS object, connected with a cmis:relationship. Each
of these CMIS Objects can be registered in the PoF Framework. The current communi-
cation consists of following parts:

Object Registration

After a new object was created, it is transferred to the CMIS repository. TYPO3 will receive
the CMIS ID of this element. This identifier is registered in the PoF Framework, which is
then able to access this object and pull required information. If the framework needs to
know the item’s relations, it can request all cmis:relations.

Meta-Data Enrichment

As any Active System could provide distinct meta information useful for PV and MB calcu-
lation, TYPO3 is exemplarily generating the following meta information set (exact values

10The Terse RDF Triple Language is a compact textual syntax for representing RDF, http://www.w3.
org/TR/turtle/

Page 54 (of 126) www.forgetit-project.eu

http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/

Deliverable D8.6 ForgetIT

to be changed) for each website page, split in two categories:
External Usage: visits count, average length of a user’s visit, bounce rate and incoming
link count
Internal Usage: creation/modified data, status changes (visibility etc.), edit history (edi-
tors, dates, ...), external references and internal references

The process to transfer this data to the PoF Framework is as following:

• Active System sends add meta data request to the PoF Framework containing the
CMIS ID and the meta data

• PoF Framework asks the CMIS for the exact type of this CMIS ID

• PoF Framework knows This object has this meta information based on the algorithm
generated by the PoF Framework before

• PoF Framework parses and saves the meta data

• PoF Framework calculates PV and MB, if more information is required, the CMIS
repository can be queried

Semantic Enrichment

Within TYPO3 authors can semantically enrich their documents, the full description of
the process is described in deliverable D10.3 [Dobberkau et al., 2015b]. The first step is
the request for possible annotations from an annotation source, at the moment a YODIE
endpoint [Greenwood et al., 2015] is used. Additionally the user adds annotations by
hand. The annotations are stored inline in RDFa Lite format. Interested middleware
components can easily extract these with the provided developed GATE plugin.

Archival and Restoration

For the moment only the manual archival is implemented in TYPO3. Before an object’s
deletion the PoF framework will receive an archive message, fetch the CMIS document
(based on a CMIS ID) and put it into the archive. When this archival process is finished
the document will be deleted from the CMIS repository.

When a document should be restored from the archive a restore request is sent to the PoF
Framework. The request contains the ID of the object in the archive and the destination
CMIS repository, where the PoF Framework will restore the object in.

6.3 CMIS-based User Applications

The adoption of CMIS standard for the bi-directional data exchange between the Active
Systems and the PoF Middleware enables the seamless integration of any user applica-

c© ForgetIT Page 55 (of 126)

ForgetIT Deliverable D8.6

tion which supports CMIS for content publication. In the following we describe an example
of such application which has been implemented for the second release.

Photo Summarization

A user application has been developed to support users in the selection of personal pho-
tos for preservation (see deliverable D9.3 [Maus et al., 2014]). This application offers
different methods that users can exploit to automatically select valuable photos from their
collections for subjecting them to special preservation activities without the requirement
of an existing Semantic Desktop. The photos selected from a given collection, along with
a set of metadata, are then stored into a publicly accessible CMIS server. This simplifies
the data exchange with the ForgetIT middleware, which can retrieve the selected photos
and preserve them into the ForgetIT archive.

Page 56 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

7 Preservation System

According to the current architecture diagram (see Figure 1 in Section 2), the Preser-
vation System is made up of two main components: the Digital Repository and the
Preservation-aware Storage System. In the following Sections we briefly summarize the
main changes with respect to the first release. Additional information about the imple-
mentation can be found in deliverables D8.1 [Gallo et al., 2013], D8.3 [Gallo et al., 2014]
and D7.3 [Chen et al., 2015].

7.1 Digital Repository

The Digital Repository is implemented using the DSpace platform. For the second frame-
work release we updated the DSpace software to the last stable version 5.5. DSpace
code is available as open source on Sourceforge [dspace,] and GitHub [dspace, 2016],
the documentation is available on the project web site11. A customized installation guide
for DSpace was provided in D8.3 for the first prototype, an updated version is available in
Appendix C.

In order to enable the interaction between the PoF Middleware and the DSpace repository,
we make use of DSpace REST APIs for all CRUD operations concerning Communities,
Collections and Items, while additional REST APIs have been implemented for specific
tasks related to the access and the ingest processes which are not supporting by the
current DSpace REST APIs. The ingest interface is used to trigger operations related
to the SIP validation, its submission and the creation of the AIP. The access interface is
used for the dissemination of the AIP. With the new REST APIs the ingest and access
processes can be managed at the metadata and bitstream level, enabling the user to also
update the existing information for preserved content, as described in the following.

DSpace internal data model is represented in Figure 25. Digital objects are organized
into several layers such as Collections, Communities, Items, and Sites. This data model
supports the package structure defined in WP5 and the definition of the PoF informa-
tion model in D8.5 [Gallo et al., 2016]. Currently, there is a direct mapping between the
DSpace collections and the ForgetIT collections described in Section 4 and Section 6
(the collection information is stored in the CMIS metadata, fetched by the Collector and
included in the AIP package).

The latest DSpace release provides a implementation of REST APIs12. The previous ver-
sions only provided READ interfaces, whilst the new release includes CRUD operations:
the creation of collections and items, the upload of resources (bitstreams) and metadata
or the retrieval of digital items can be performed using the REST APIs only. As a conse-
quence, it is now possible to register new items with only metadata and store the actual
files only in the cloud storage. This preservation mechanism has been implemented for

11DSpace - http://www.dspace.org
12DSpace 5.x REST API: https://wiki.duraspace.org/display/DSDOC5x/REST+API

c© ForgetIT Page 57 (of 126)

ForgetIT Deliverable D8.6

Figure 25: DSpace data model diagram.

the third release, in parallel with the development of the cloud storage (see next Section),
with additional Storlets implementing preservation tasks.

DSpace is compliant to Open Archival Information System (OAIS) model (see deliver-
able D8.1): the main OAIS functionalities such as Ingest, Access or Data Manage-
ment are implemented and the package exchange is inspired by the OAIS approach.
DSpace implements the repository packages as Submission Information Package (SIP),
Archival Information Package (AIP) and Dissemination Information Package (DIP) (see
[CCSDS, 2012]). The relationship between the PoF Reference Model and the OAIS model
is discussed in detail in deliverable D8.2 and will not be repeated here. From an imple-
mentation point of view, we adopted OAIS terminology for the packages to be compliant
with DSpace.

The ingest and access endpoints exposed by the Preservation System are depicted in
Figure 26. The code is written in Java and is deployed in the main PoF Middleware
Java project, as part of the eu.forgetit.preservation.server package. The main
class is ServiceEndpoint, which contains JAX-RS annotated methods which are pub-
lished as REST APIs using Java Jersey. The server responses are provided in different

Page 58 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

formats (XML, JSON, etc.). The other classes depicted in Figure 26 are used for other
tasks required to interact with DSpace tools. The endpoint of the Preservation System
is used by the Archiver component and is configured in the DigitalRepositorySer-
viceConsumer class of the Archiver (see Section 5.6).

Figure 26: Class diagram for Preservation System endpoint, with associated classes.

7.2 Preservation-aware Storage System

The ForgetIT cloud-based Preservation-aware Storage system described in deliverable
D7.3 [Chen et al., 2015], serves as the backend storage for the ForgetIT Digital Repos-
itory component. It is built on top of the OpenStack Swift object store, which is one of
the top open-source cloud projects [Baker, 2014]. Our cloud storage has computational
abilities, which come from a storlet engine that we have designed and implemented.
The storage computational abilities allow offloading of preservation functionalities to the
storage. Our cloud-storage also has metadata-search capabilities, which facilitate the
retrieval of preserved information.

Storlets are typically used to transform the data, filter the data, or analyze the data, all
in the object store. One of the main use cases for the use of storlets in an archival
information system is that of format transformations. This is needed, for instance, when a
file format has become obsolete.

The storlet engine works on streams, which means that storlets can begin streaming out
the transformed data almost immediately, long before the entire transformation is com-
plete. We demonstrate this through a storlet for the streaming of low-quality versions of
videos, in order to create a video equivalent of photo thumbnails. In digital preservation it

c© ForgetIT Page 59 (of 126)

ForgetIT Deliverable D8.6

is common to allow a user to get a low-quality viewable version of a resource, to help him
decide whether he would like to directly access the resource preserved in the archive.
The low-resolution storlet works on AIP packages, which are packaged as tar objects;
these AIP packages contain both data and metadata files. The storlet extracts the data
portion of the package, and streams out the transformation of that portion.

We have implemented and tested mechanisms of differentiating between the performances
of different Preservation Levels. In one experiment we were able to improve the per-
formance of Premium objects by 33.5 percent, at the expense of the Standard objects
performance. We do this by giving different levels of replication to different Preservation
Levels, and also tuning the “CPU shares” given to the different Preservation Levels.

We have turned the Storlets project into an open-source project, managed through the
OpenStack Continuous-Integration platform (see deliverable D7.4 [Chen et al., 2016]).
The Storlet engine is released under the Apache License version 2.0 to conform to the
license used for the main OpenStack distribution. Using the OpenStack infrastructure,
we have set up a set of tests which are run every time someone proposes a new con-
tribution to the code; these tests make sure that the proposed new code adheres to our
code-quality standards, and does not break the storlet-engine functionality. We are also
working on cultivating a community around the Storlets project.

Page 60 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

8 Third Prototype Implementation

Information about software development, deployment and testing was also provided for
the previous prototypes in deliverables D8.3 [Gallo et al., 2014] and D8.4 [Gallo et al., 2015a].

In the following we summarize the relevant information for the development of the PoF
Middleware and the RESTful server of the Digital Repository. For the implementation
of the Active Systems, the middleware internal components and the Preservation-aware
Storage System please refer to the related deliverables from other WPs.

Software Development

For what concerns the development of the PoF Middleware and Preservation System,
two separate Java EE web projects have been created. Since the applications in the
framework are distributed, we use the Java Enterprise Edition (EE) framework and the
Eclipse Integrated Development Environment (IDE)13 bundle for Java EE Developers. The
version of Eclipse IDE used for the development is 5.1 (Mars), while for compilation we
upgraded the code to use Oracle Java JDK 8. The source code is available on project
SVN repository and Trac14 is used as issue tracking system. Apache Maven15 is used to
compile and build the Java projects.

Software Projects and Packages

The Java packages of both projects are briefly described in Table 2 and Table 3, while the
UML package diagrams are shown in Figure 27 and Figure 28. In both the Figures and
the Tables we omitted test packages (used mainly for unit tests).

The UML packages in the model correspond exactly to the Java packages in both applica-
tions. Concerning the namespaces, the fully qualified names in the UML diagram based
on UML specification are converted using Java naming convention, so for example the
namespace for middleware::component sub-package corresponds in the Java code
to eu.forgetit.middleware.component.

13Eclipse - http://www.eclipse.org
14The Trac Project - http://trac.edgewall.org
15Apache Maven - http://maven.apache.org

c© ForgetIT Page 61 (of 126)

http://www.eclipse.org
http://trac.edgewall.org
http://maven.apache.org

ForgetIT Deliverable D8.6

Figure 27: UML package diagram for the PoF Middleware.

Figure 28: UML package diagram for the Preservation System.

Page 62 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Package Description
eu.forgetit.middleware Classes used by all other packages, to perform ba-

sic functions such as configuration and data manage-
ment. ConfigurationManager manages properties
for all components, for the broker and the workflows.
DataManager provides APIs for the persistence of data
in the middleware internal DB (e.g. IDs and tasks).

eu.forgetit.middleware.broker Auxiliary classes associated to messaging component, e.g.
to retrieve information shown in the GUI or for message log-
ging. This package is no more responsible for the message
exchange and routing, because this is implemented using
Spring framework: all instances of message producers and
consumers, the queues, the routes and the activation of the
components are managed by ActiveMQ and Camel.

eu.forgetit.middleware.component A class for each PoF Middleware component, implemented
as EJB and exposing public methods accepting and pro-
ducing Camel Exchange objects when consuming and
producing messages. The classes implement also private
methods for specific functionalities required for process-
ing information extracted from messages and for execut-
ing specific tasks. These classes often instantiate service
consumers in order to exchange information with external
services providing specific functionalities.

eu.forgetit.middleware.gui Auxiliary classes used by part of the middleware GUI,
mainly for what concerns the status of resources, the ID
mappings, the running tasks and the logging messages.
The classes in this package will be updated to be used in
the new middleware GUI based on hawtio.

eu.forgetit.middleware.model Three main classes, Situation, Collection and Item,
to represent situation, collections and single items to be
preserved. The sub-packages contain auto-generated
classes corresponding to specific metadata schemas, such
as METS and MODS, used when preparing packages for
preservation, since they are used in DSpace to represent
archival objects and the associated descriptive metadata.
Metadata classes have been automatically generated from
the schema files (XSD) by means of JAXB.

eu.forgetit.middleware.remote Classes implementing the Service Activator
pattern, used by the components to interact
with external (REST) services. Examples are
ExtractorServiceConsumer (external service for im-
age analysis) and ContextualizerServiceConsumer
(external contextualization service), as well as service
consumers for Digital Repository and cloud storage.

eu.forgetit.middleware.server Classes implementing the middleware REST APIs (Java
Jersey) and other support classes for specific tasks within
the REST server, such as listeners or filters.

eu.forgetit.middleware.utils Utilities used by the other packages, exposing mainly static
methods: for example tools to create compressed folders
or to obtain the MIME type of a given resource.

Table 2: Packages of the PoF Middleware project.

c© ForgetIT Page 63 (of 126)

ForgetIT Deliverable D8.6

Package Description
eu.forgetit.preservation Classes used by all other packages, to perform basic

functions such as configuration and data management.
ConfigurationManager manages the properties for all
components, such as the connection information about the
Digital Repository and cloud storage REST services.

eu.forgetit.preservation.component Two main classes, Packager and PackageValidator:
the former is responsible for importing packages in the Dig-
ital Repository, while the latter performs extra package val-
idation before ingest.

eu.forgetit.preservation.server Classes implementing the Preservation System REST
APIs (using Java Jersey). It also contains other support
classes for specific tasks within the REST server, such as
listeners or filters used during the REST requests. The Dig-
ital Repository uses the classes and methods in this pack-
age to process the ingest and access requests.

eu.forgetit.preservation.utils Utilities used by the other packages, for example tools to
manage different compressed archives or to validate the
MIME type of a given file. The classes in these package
mainly expose public static methods.

Table 3: Packages of the Preservation System projects.

Software Testing

In order to test the developed software for the PoF Middleware and the Preservation Sys-
tem, we performed unit tests using JUnit16. Using appropriate plug-ins, JUnit tests were
executed within the Eclipse IDE during development, mainly for debugging purposes,
while a list of tests is defined in the Maven project configuration and executed automati-
cally during building. When generating the project artifacts (Java WAR files), we use the
default Maven configuration to resolve and retrieve third-party dependencies, compile the
source code, execute the unit tests and package the compiled code in a Java WAR file to
be deployed in Apache Tomcat 817.

In order to test each component, we used dry run experiments. The components de-
veloped by other technical WPs have been tested by each partner separately, before
releasing them for integration. The interaction between the PoF Middleware and the other
components has been tested running different workflows. The end-to-end preservation
workflow was tested incrementally, mainly by adding new steps as soon as the required
input from previous steps was available.

16JUnit - http://junit.org
17Apache Tomcat - http://tomcat.apache.org

Page 64 (of 126) www.forgetit-project.eu

http://junit.org
http://tomcat.apache.org

Deliverable D8.6 ForgetIT

Software Deployment

For deployment we make use of virtualization: the different systems are running in the
testbed environment as virtual machines (VMs). The virtualization infrastructure is based
on KVM18, a full virtualization solution for Linux.

The two Active Systems are deployed in dedicated VMs: for TYPO3 CMS a Linux server
including also an instance of Alfresco (used for CMIS repository) is available; for the
Semantic Desktop a Linux VM for the PIMO Server and a Windows VM for the PIMO
Desktop are used (see Figure 1).

The two Java projects are deployed in separate instances of Tomcat 8, one running in the
PoF Middleware virtual machine and one in execution within the Preservation System VM.
For the PoF Middleware a Ubuntu Server VM is used to run the REST server, the broker
and the routing engine, as well as all the components deployed within the middleware
Apache Tomcat server.

For the Preservation System, a Ubuntu Server VM is used to run DSpace and the REST
server, while a dedicated VM is used for the cloud storage, running the Storlet Engine and
OpenStack Swift. Other VMs in the testbed provide additional services, such as a VPN
server, a FTP server and a dedicated name server.

Software Documentation

The documentation of the source code is automatically generated using Doxygen19 and
will be available on the project web site at the following URL:

http://www.forgetit-project.eu/en/project-results/code

An internal task force was established within the project to publish the source code of
the PoF Framework. This required an additional effort to clean up the source code, add
APIs documentation, remove any dependency from the specific testbed configuration and,
above all, to identify the core components for a minimal working system which could be
released as open source and installed by interested users.

The pre-compiled binaries for the framework components (web applications, executables,
libraries) as well as instructions for the installation and usage are provided by project
partners. For detailed documentation about each component please refer to deliverables
provided by the corresponding WP.

The backbone of the middleware is based on Apache Foundation software, such as Ac-
tiveMQ and Camel. The third-party dependencies used to compile the two Java projects
are available on public Maven repositories and can be retrieved during compilation using
project configuration in the pom.xml file. A few executables (e.g. ffmpeg) are used for
specific tasks. The code has been developed and tested mainly for Linux (Ubuntu Server

18KVM - http://www.linux-kvm.org
19Doxygen - http://www.doxygen.org

c© ForgetIT Page 65 (of 126)

http://www.forgetit-project.eu/en/project-results/code
http://www.linux-kvm.org
http://www.doxygen.org

ForgetIT Deliverable D8.6

14.04.4 LTS 64-bit), but since the code is written in Java it can be virtually executed in
any operating system where a Java VM can be run. The executables written in other lan-
guages (e.g. C++) have to be replaced with the corresponding versions for that particular
operating system (if the bundle is not available, they have a to be compiled from scratch).

Software Licensing

One of the goals of the ForgetIT project was to propose a new approach to digital preser-
vation which can bridge the gap between information systems and preservation solu-
tions. Many initiatives and individuals in the digital preservation domain believe that only
an approach based on standards and open source technologies can produce valuable
benefit for the different stakeholders, resulting in several open source preservation sys-
tems, which can be customized for specific requirements preventing vendor lock-in and
the associated risk for the long term (see also deliverable D8.1 [Gallo et al., 2013], which
contains an assessment of several open source digital preservation platforms).

Based on such ideas, the ForgetIT consortium agreed upon releasing under an open
source license the core components of the PoF Framework.

The exact license type depends on the specific component. In parallel, project partners
worked on improving the source code quality and documentation to a level adequate for
dissemination. It is worth noting that the core libraries for the implementation of the PoF
Middleware are available under the Apache license and that several components devel-
oped within the project have been already released as open source by the responsible
partner, as described in the previous Sections. Any additional code developed to im-
plement the PoF Middleware is available as open source, as well. The backbone of the
PoF Middleware infrastructure is based on Apache ServiceMix components, which are
available as open source.

Concerning the Preservation System, the Digital Repository is based on DSpace (avail-
able under the BSD license), while the licensing mechanism adopted by IBM for the Storlet
Engine is also an open source license for the core part of the Storlet Engine (OpenStack
Swift is already available as open source). Part of the effort for the cloud storage software
is devoted to the proposal of including the Storlet Engine code in the OpenStack Swift
mainstream development. A preliminary proposal has been submitted to the OpenStack
community (see Section 7).

Concerning the Active Systems, TYPO3 is already available as open source, the licensing
of additional customization is still under evaluation, while the Semantic Desktop will be
available as open source.

Page 66 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

9 Conclusion

The document provides a description of the final release of the PoF Framework. The
updated prototype with all integrated components has been discussed. The software
prototype reported in this document is the result of the effort performed by all partners
during the whole project lifetime. Two main workflows (for Preservation Preparation and
Re-activation) have driven the prototype implementation.

In the following sections, we briefly discuss the assessment of the results presented here,
according to the WP8 performance indicators in the project proposal and then describe
the lessons learned and the vision for the future.

9.1 Assessment of Performance Indicators

The expected WP8 outcomes, reported in the project proposal, are:

• the Preserve-or-Forget (PoF) Reference Model

• the PoF Framework

The third framework prototype refers to the second expected outcome, for which the fol-
lowing performance indicators have been identified in the project proposal:

1. availability of interfaces and protocols exposed/published by software components
to be integrated and delivered by technical work packages,

2. adequateness and effectiveness of the defined integration approach and strategy
for the occurring integration tasks,

3. availability of infrastructure facilities for managing the development of the software
framework (e.g. versioning system, software repository).

The prototype described here represents the final release of the PoF Framework. The
results achieved so far are compatible with the expected progress and success indicators
for WP8. Since the framework will be available as open source after the project end,
future projects or adopters could provide further development and investigation to better
support the whole reference model.

Indicator 1: APIs and protocols

The achievements for the first and second prototype already satisfied this indicator, simi-
lar considerations are reported here for the third prototype. The APIs and protocols of the
components to be integrated have been tested, the third prototype integrates the compo-
nents according to the integration plan in D8.1. The APIs published by the PoF Middle-
ware and the Preservation System (Digital Repository and Preservation-aware Storage

c© ForgetIT Page 67 (of 126)

ForgetIT Deliverable D8.6

System) are based on REST architectural style, hence different HTTP verbs are used to
get and send data. The REST APIs have been implemented using Java reference soft-
ware, to maximize integration with all external systems. Concerning the protocols, CMIS
is used to retrieve resources and metadata from Active Systems. CMIS is a open standard
protocol aimed to support interoperability and is widely adopted and supported. CMIS is
also used to bring re-activated content back to use, since also the PoF Middleware pub-
lishes the re-activated content using its own CMIS repository. As a consequence, any
user application supporting CMIS can be seamlessly integrated with the PoF Framework.
Moreover, standard formats have been used for content packaging (XML-based formats
such as METS, Dublin Core, PREMIS) and for communication with web services (XML or
JSON).

Indicator 2: integration approach

The integration approach was established during the first year of project and is still valid.
We leverage the best practices in Enterprise Application Integration (EAI), adopting well
established concepts such as the Enterprise Service Bus (ESB) for the communication
layer and Enterprise Integration Patterns (EIP) as industry level standard for complex
integration patterns. Apache Camel, used for the message routing, implements all EIPs
available in the literature, examples have been provided in the text and the benefits of
such approach have also been discussed. The PoF Middleware is implemented as a
Message Oriented Middleware (MOM), this approach has been further validated in the
third year with the integration of additional components in the implementation of the new
workflows defined in the PoF Reference Model.

A preliminary integration plan was summarized in Table 15 of deliverable D8.1, where
we split the components in four categories and assigned an expected integration level for
each framework release. For what concerns the Active Systems, the integration mecha-
nism with the PoF is in place, according to the plan. Concerning the middleware shared
components, compared to the second release, we completed the Metadata Repository
and the Context-aware Preservation Manager implementation. Concerning the middle-
ware core components and the Preservation System, the current status is compliant to the
plan, now including an updated version of the Contextualizer and an integrated Conden-
sator service, which was missing in the second prototype. Based on such considerations,
we can estimate that all components are now fully integrated, although the Context-aware
Preservation Manager, due to the complexity of the associated processes, would require
further integration effort. The aforementioned integration plan was constantly discussed
and monitored within the consortium by means of face-to-face meeting and periodic con-
ference call, and appropriate actions have been taken to complete as much as possible
the development and integration of all components on time for the final framework release.

Page 68 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Indicator 3: development and test infrastructure

The testbed environment was setup during the first year and is still accessible to all part-
ners. The virtualization environment and the code versioning system (SVN) is maintained
by EURIX. An issue tracking system (Trac) was used to keep track of all open issues
identified during project meetings and periodic conference calls. It was used for ticketing,
as well as to define milestones for the development (software releases, deadlines , etc.)
and to share information about exceptions and errors. Each ticket was assigned to the
appropriate partner, under the lead of EURIX as responsible for integration. Progress for
each milestone and deadline can be monitored, taking into account open tickets. The ap-
proach adopted for software development is based on Agile methodology, using UML for
sharing ideas and to describe software components, from preliminary sketches to com-
plex modules. Only a minimal amount of additional documents were created and shared
during the development phase, using the project wiki or other systems in the cloud (e.g.
Google Drive) to prepare short technical notes and guidelines focusing on specific issues.

9.1.1 Evaluation of the PoF Framework

The evaluation of the framework during the third year mainly focused on the quality of
the developed software and on the deployment process, analysing the effort required
to install the prototype from scratch in a new environment, to customize or create new
workflows and to extend the platform with additional components. As an example, an
installation of the PoF Framework was performed at DFKI premises, using local resources
and deploying many components in the new environment. This installation was pretty
straightforward and no specific issues were pointed out.

Concerning the framework itself, the backbone of the middleware leverages established
technologies for the broker implementation: the software components used for the mes-
saging system and the workflow engine are provided by Apache ActiveMQ and Apache
Camel, which are maintained and tested by a large community of developers and have
been currently chosen also for enterprise grade solutions, such as JBoss FUSE mid-
dleware. Concerning the Preservation System, the Digital Repository is implemented by
DSpace, which is also actively maintained and tested and, above all, is a solution adopted
for many institutional repositories around the word (the number of acknowledged installa-
tions of DSpace from public institutions is currently a few thousands).

Moreover, many components have been tested separately within the corresponding WP,
the evaluation of each component can be found in the corresponding WPs. Many compo-
nents developed in the technical WPs leverage third party software tools that are usually
actively maintained and tested by large open source communities.

For the tests of the two pilot applications and for the user studies, please refer to WP2,
WP9 and WP10 deliverables.

c© ForgetIT Page 69 (of 126)

ForgetIT Deliverable D8.6

9.2 Lessons Learned

The development of the PoF Framework was quite challenging, for several reasons:

• the number of components developed in the technical WPs was large, mainly for
what concerns the middleware, and the architecture of the framework was quite
complex;

• the integration effort involved almost all partners and required deep discussion and
periodic checks of the status for the whole project lifetime;

• the development of the reference model, with the information and functional part
and all the associated workflows, continued for the whole project lifetime, as a result
of continuous investigation;

• the development of the components also was performed for all the three years, so
additional integration effort was required for each framework release;

• the middleware had to integrate with existing information systems (e.g. PIMO and
TYPO3) and preservation systems (DSpace and OpenStack Swift), which were in
turn further developed during the project;

• the selection of candidate solutions for the middleware and archive implementation
was conducted during the first year as part of the integration work.

The integration plan and the architecture of the whole framework were discussed in detail
among all the project partners and this was crucial in order to deliver after the first year
a working prototype implementing a basic end-to-end preservation workflow with compo-
nents available at that time.

The use of best practices concerning software development and integration, as mentioned
in this document, were helpful to reduce the issues related to integration and to provide a
stable and flexible solution after the second year.

The full development of the reference model was completed at the very end of the project,
according to the plan, but further investigation would be required to improve the implemen-
tation of the model, mainly for what concerns the evolution part of the model.

9.3 Vision for the Future

The source code of the PoF Framework will be available on the project web site as open
source, so any potential adopter of ForgetIT outcomes can access it. The framework was
intended as a preliminary implementation of the ForgetIT approach to digital preservation
described in the reference model, so there is still room for future improvements.

The core technologies used for the implementation of the framework are well established
and generally available as open source, so the integration of the PoF Framework with

Page 70 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

existing solutions is simplified. The latest version of libraries and technologies were used
for the implementation, so hopefully the maintenance of the code will not be an urgent
issue on the short term.

c© ForgetIT Page 71 (of 126)

ForgetIT Deliverable D8.6

10 References

[Baker, 2014] Baker, J. (2014). Survey Says: Openstack and Docker Top Cloud Projects.
http://opensource.com/business/14/8/openstack-and-docker-top-cloud-projects. Re-
trieved March 2016.

[Bergljung, 2014] Bergljung, M. (2014). Alfresco CMIS. Packt Publishing.

[CCSDS, 2012] CCSDS (2012). Reference Model for an Open Archival Informa-
tion System (OAIS) - recommended practice, ccsds 650.0-m-2 (magenta book) is-
sue 2. also available as iso standard 14721:2012. http://public.ccsds.org/
publications/archive/650x0m2.pdf.

[Chappell, 2004] Chappell, D. (2004). Enterprise service bus. O’Reilly Media, Inc.

[Chen et al., 2015] Chen, D., Loğoğlu, B., and Nilsson, J. (2015). ForgetIT Deliverable
D7.3: Computational Storage Services - Second Release.

[Chen et al., 2016] Chen, D., Nilsson, J., Andersson, I., Gür, G., Greenwood, M., and
Gallo, F. (2016). ForgetIT Deliverable D7.4: Computational Storage Services - Final
Release.

[Cunningham et al., 2011] Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T.,
Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text Process-
ing with GATE (Version 6).

[DAI and ZHU, 2010] DAI, J. and ZHU, X.-M. (2010). Design and implementation of an
asynchronous message bus based on activemq. Computer Systems & Applications,
8:062.

[Dobberkau et al., 2015a] Dobberkau, O., Due, C., Wegenast, G., Goslar, J., Doan, P.,
Egerer, S., Krasteva, V., Schaffstein, S., Wolters, M., Mayer-Schönberger, V., and
Niederée, C. (2015a). ForgetIT Deliverable D10.2: Organizational Preservation Pilot
Application V1.

[Dobberkau et al., 2015b] Dobberkau, O., Goslar, J., Gsedl, I., and Wolters, M. (2015b).
ForgetIT Deliverable D10.3: Organizational Preservation Pilot Application V2.

[Dobberkau et al., 2016] Dobberkau, O., Goslar, J., Gsedl, I., and Wolters, M. (2016).
ForgetIT Deliverable D10.4: Organizational Preservation Report.

[dspace,] dspace. DSpace SourceForge Repository. https://sourceforge.net/
projects/dspace/files.

[dspace, 2016] dspace (2016). DSpace GitHub Repository. https://github.com/
DSpace/DSpace. Retrieved March 2016.

Page 72 (of 126) www.forgetit-project.eu

http://public.ccsds.org/publications/archive/650x0m2.pdf
http://public.ccsds.org/publications/archive/650x0m2.pdf
https://sourceforge.net/projects/dspace/files
https://sourceforge.net/projects/dspace/files
https://github.com/DSpace/DSpace
https://github.com/DSpace/DSpace

Deliverable D8.6 ForgetIT

[Gallo et al., 2015a] Gallo, F., Ceroni, A., Tran, T., Chen, D., Andersson, I., Greenwood,
M. A., Maus, H., Lauer, A., Schwarz, S., Papadopoulou, V. S. O., Apostolidis, E.,
Pournaras, A., Mezaris, V., and Goslar, J. (2015a). ForgetIT Deliverable D8.4: The
Preserve-or-Forget Framework - Second Release.

[Gallo et al., 2013] Gallo, F., Kanhabua, N., Djafari-Naini, K., Niederée, C., Rad, P. A.,
Andersson, I., Lindqvist, G., Nilsson, J., Henis, E., Rabinovici-Cohen, S., Maus, H.,
Steinmann, F., Mezaris, V., Papadopoulou, O., Solachidis, V., Dobberkau, O., Doan,
P., Greenwood, M., Allasia, W., and Pellegrino, J. (2013). ForgetIT Deliverable D8.1:
Integration Plan and Architectural Approach.

[Gallo et al., 2015b] Gallo, F., Niederée, C., Andersson, I., Nilsson, J., Chen, D., Maus,
H., Greenwood, M., and Logie, R. (2015b). ForgetIT Deliverable D8.2: The Preserve-
or-Forget Reference Model - Initial Model.

[Gallo et al., 2016] Gallo, F., Niederée, C., Andersson, I., Nilsson, J., Chen, D., Maus, H.,
Greenwood, M. A., Logie, R., and Allasia, W. (2016). Deliverable D8.5: The Preserve-
or-Forget Reference Model - Final Model.

[Gallo et al., 2014] Gallo, F., Niederée, C., Kanhabua, N., Chen, D., Maus, H., Solachidis,
V., Damhuis, A., Greenwood, M. A., and Pellegrino, J. (2014). ForgetIT Deliverable
D8.3: The Preserve-or-Forget Framework - First Release.

[Gorrell et al., 2015] Gorrell, G., Petrak, J., and Bontcheva, K. (2015). Using@ twitter
conventions to improve# lod-based named entity disambiguation. In The Semantic
Web. Latest Advances and New Domains, pages 171–186. Springer.

[Greenwood et al., 2015] Greenwood, M. A., Ceroni, A., Petrak, J., Gorrell, G., Mezaris,
V., Papadopoulou, O., Solachidis, V., Eldesouky, B., and Maus, H. (2015). ForgetIT
Deliverable D6.3: Contextualisation Tools - Second Release.

[Greenwood et al., 2016] Greenwood, M. A., Solachidis, V., Papadopoulou, O., Aposto-
liditis, K., Galanopoulos, D., Tastzoglou, D., Mezaris, V., Eldesouky, B., Maus, H., Tran,
N. K., Hube, C., Niederée, C., Petrak, J., and Gorrell, G. (2016). ForgetIT Deliverable
D6.4: Contextualisation Framework and Evaluation.

[Henjes et al., 2007] Henjes, R., Schlosser, D., Menth, M., and Himmler, V. (2007).
Throughput performance of the activemq jms server. In Kommunikation in Verteilten
Systemen (KiVS), pages 113–124. Springer.

[Hohpe and Woolf, 2003] Hohpe, G. and Woolf, B. (2003). Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

[Ibsen and Anstey, 2010] Ibsen, C. and Anstey, J. (2010). Camel in Action. Manning
Publications Co., Greenwich, CT, USA, 1st edition.

c© ForgetIT Page 73 (of 126)

ForgetIT Deliverable D8.6

[Kanhabua et al., 2015] Kanhabua, N., Niederée, C., Ceroni, A., Naini, K. D., Kawase, R.,
Tran, T., Maus, H., and Schwarz, S. (2015). ForgetIT Deliverable D3.3: Strategies and
Components for Managed Forgetting - Second Release.

[Kanhabua et al., 2013] Kanhabua, N., Niederée, C., Loggie, R., Tran, T., Djafari-Naini,
K., Maus, H., and Schwarz, S. (2013). ForgetIT Deliverable D3.1: Report on Founda-
tions of Managed Forgetting.

[Kanhabua et al., 2014] Kanhabua, N., Niederée, C., Tran, T., Nguyen, T. N., Djafari-
Naini, K., Kawase, R., Schwarz, S., and Maus, H. (2014). ForgetIT Deliverable D3.2:
Components for Managed Forgetting - First Release.

[Maus et al., 2014] Maus, H., Schwarz, S., Eldesouky, B., Jilek, C., Wolters, M., and
Loğoğlu, B. (2014). ForgetIT Deliverable D9.3: Personal Preservation Pilot I: Concise
Preserving Personal Desktop.

[Maus et al., 2015] Maus, H., Schwarz, S., Jilek, C., and Gallo, F. (2015). ForgetIT De-
liverable D9.4: Personal Preservation Pilot II: Concise Preserving Mobile Information
Assistant.

[Maus et al., 2016] Maus, H., Schwarz, S., Jilek, C., Wolters, M., Rhodes, S., Ceroni, A.,
and Gür, G. (2016). ForgetIT Deliverable D9.5: Personal Preservation Report.

[Müller et al., 2013] Müller, F., Brown, J., and Potts, J. (2013). CMIS and Apache Chem-
istry in Action. Manning Publications Co., Greenwich, CT, USA, 1st edition.

[Nilsson et al., 2016] Nilsson, J., Andersson, I., and Gallo, F. (2016). ForgetIT Deliverable
D5.4: Workflow Model and Prototype for Transition between Active System and AIS -
Final release.

[Nilsson et al., 2015] Nilsson, J., Andersson, I., Lindqvist, G., and Westerlund, P. (2015).
ForgetIT Deliverable D5.3: Workflow Model and Prototype for Transition between Active
System and AIS - Second Release.

[Nilsson et al., 2014] Nilsson, J., Andersson, I., Rad, P. A., Lindqvist, G., Päivärinta, T.,
Rabinovici-Cohen, S., Maus, H., Dobberkau, O., Allasia, W., and Gallo, F. (2014). For-
getIT Deliverable D5.2: Workflow Model and Prototype for Transition between Active
System and AIS - First Release.

[Nilsson et al., 2013] Nilsson, J., Päivärinta, T., Rad, P. A., Maus, H., and Dobberkau, O.
(2013). ForgetIT Deliverable D5.1: Foundations of Synergetic Preservation.

[OASIS, 2013] OASIS (2013). Content Management Interoperability Services (CMIS)
Version 1.1. OASIS Standard. http://docs.oasis-open.org/cmis/CMIS/v1.
1/CMIS-v1.1.html. Retrieved March 2016.

[ObjectDB, 2015] ObjectDB (2015). Fast Object Database for Java. http://www.
objectdb.com. Retrieved March 2016.

Page 74 (of 126) www.forgetit-project.eu

http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html
http://www.objectdb.com
http://www.objectdb.com

Deliverable D8.6 ForgetIT

[Papadopoulou et al., 2013] Papadopoulou, O., Mezaris, V., Greenwood, M. A., and Lo-
goglu, B. (2013). ForgetIT Deliverable D4.1: Information Analysis, Consolidation and
Concentration for Preservation - State of the Art & Approach.

[Papadopoulou et al., 2014] Papadopoulou, O., Mezaris, V., Solachidis, V., Ioannidou, A.,
Eldesouky, B. B., Maus, H., and Greenwood, M. A. (2014). ForgetIT Deliverable D4.2:
Information Analysis, Consolidation and Concentration Techniques, and Evaluation –
First Release.

[Rabinovici-Cohen et al., 2014] Rabinovici-Cohen, S., Henis, E., and Ta-Shma, P. (2014).
ForgetIT Deliverable D7.2: Computational Storage Services - First Release.

[Snyder et al., 2011] Snyder, B., Bosanac, D., and Davies, R. (2011). ActiveMQ in Action.
Manning Publications Co., Greenwich, CT, USA.

[Solachidis et al., 2016] Solachidis, V., Apostolidis, E., Markatopoulou, F., Galanopoulos,
D., Tzelepis, C., Arestis-Chartampilas, S., Pournaras, A., Tastzoglou, D., Mezaris, V.,
Chen, D., Harnik, D., Khaitzin, E., Eldesouky, B., Maus, H., Greenwood, M., and Tan,
A. S. (2016). ForgetIT Deliverable D4.4: Information Analysis, Consolidation and Con-
centration Techniques, and Evaluation - Final Release.

[Solachidis et al., 2015] Solachidis, V., Papadopoulou, O., Apostolidis, K., Ioannidou, A.,
Mezaris, V., Greenwood, M. A., and Maus, H. (2015). ForgetIT Deliverable D4.3: Infor-
mation Analysis, Consolidation and Concentration Techniques, and Evaluation - Sec-
ond Release.

[The University of Sheffield, 2016] The University of Sheffield (2016). General Architec-
ture for Text Engineering (GATE). https://gate.ac.uk. Retrieved March 2016.

[Zhu et al., 2016] Zhu, X., Niederée, C., Tran, T., Ceroni, A., Naini, K. D., Tran, N. K., ,
Maus, H., and Jilek, C. (2016). ForgetIT Deliverable D3.4: Strategies and Components
for Managed Forgetting Final Release.

c© ForgetIT Page 75 (of 126)

https://gate.ac.uk

ForgetIT Deliverable D8.6

Glossary

AIP Archival Information Package. 57, 58, 60

CMIS Content Management Interoperability Services. 3, 8, 10, 12, 22, 28–30, 32, 35, 42,
44, 53–57, 65, 68, 87, 88, 118, 119, 121, 124

CRUD Create Read Update Delete. 32, 34–36, 57

DIP Dissemination Information Package. 43, 58

EAI Enterprise Application Integration. 24, 68

EIP Enterprise Integration Patterns. 8, 24–26, 38, 41, 48, 68

EJB Enterprise JavaBeans. 32, 35, 36, 63

ESB Enterprise Service Bus. 8, 12, 22, 25, 26, 43, 68

IDE Integrated Development Environment. 61, 64

JMS Java Message Service. 26

JSON JavaScript Object Notation. 28, 35, 36, 59, 68, 84, 86, 125

MB Memory Buoyancy. 10, 34, 45–47, 53–55, 125

MOM Message Oriented Middleware. 8, 12, 22–24, 26, 68

OAIS Open Archival Information System. 58

PIMO Personal Information MOdel. 29, 45–47, 53, 54, 65

PoF Preserve-or-Forget. 3, 8–13, 15, 16, 20, 22, 24, 26–31, 33, 35–37, 43, 44, 46,
48–55, 57, 58, 61, 63–68, 70, 78, 86, 89, 118, 123

PV Preservation Value. 29, 31, 34, 35, 37, 45–47, 53–55, 87, 118–120

SIP Submission Information Package. 42, 44, 57, 58

UML Unified Modeling Language. 61, 69

UUID Universally Unique IDentifier. 32

XML eXtensible Markup Language. 26, 27, 32, 35–37, 39, 42, 44, 59, 68, 77–80, 82, 86

Page 76 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

A Middleware Configuration and Administration

In the following we provide additional examples about the actual configuration of the mid-
dleware, for what concerns the broker, the routing engine and the internal components.
We also provide some screenshots from the new administrative web console implemented
for the second release.

Scheduler Message Routing

An example taken from the middleware source code is shown in Listing 1, where the
Scheduler message route is defined using Spring XML and Apache Camel. In the next
paragraph we show other configured routes and the full Camel configuration file.

Based on the value of different headers for the incoming message, a specific logic is
implemented: for example based on the request (Task type), the two main workflows
are executed. The from element defines a message endpoint to consume messages
from, while the Message Router pattern is implemented using the choice and when
elements. The bean tag is used to invoke operations on specific Spring beans, which
are Java classes instantiated at boot time. Finally, the to element defines a message
destination. For the Scheduler route, these destinations are associated to other routes
and can trigger other processes.

Listing 1: Scheduler route definition
<rou te i d = ” schedulerRoute ”>

<from u r i = ” activemq:queue:SCHEDULER .QUEUE” />

<choice>

<when>
<simple>${ i n . header . taskSta tus } == ’COMPLETED ’< / s imple>
<bean r e f = ” scheduler ” method= ” closeTask ” />
<to u r i = ” activemq:queue:LOG .QUEUE” />

< / when>

<when>
<simple>${ i n . header . taskSta tus } == ’ FAILED ’< / s imple>
<bean r e f = ” scheduler ” method= ” closeTask (${ i n . header . t ask Id }) ” />
<to u r i = ” activemq:queue:ERROR .QUEUE” />

< / when>

<otherwise>
<when>

<simple>${ i n . header . taskType} == ’PRESERVATION ’< / s imple>
<bean r e f = ” scheduler ” method= ” parseResources ” />
<to u r i = ” activemq:queue:LOG .QUEUE” />

< / when>
<when>

<simple>${ i n . header . taskType} == ’REACTIVATION ’< / s imple>

c© ForgetIT Page 77 (of 126)

ForgetIT Deliverable D8.6

<to u r i = ” activemq:queue:REACTIVATION .QUEUE” />
<to u r i = ” activemq:queue:LOG .QUEUE” />

< / when>
< / o therwise>

< / choice>

< / rou te>

Middleware Configuration

In the following we provide two sample configuration files for the messaging system and
the routing engine in the PoF Middleware. Both examples make use of Spring XML frame-
work.

A sample ActiveMQ configuration is shown in Listing 2. The broker configuration (name,
ports, protocols) and the connection factory are provided, they are both instantiated at
start time when the PoF Middleware server running in Apache Tomcat is started. The
queues and the topics are defined providing just the name (with topics each message is
sent to all subscribers, with queues each message is sent to a single consumer). Finally,
all middleware components are defined as Spring beans, therefore their instances are
created and maintained over time by the Spring framework.

Listing 2: ActiveMQ configuration with Spring XML
<broker i d = ” broker ” brokerName= ” pofBroker ” useShutdownHook= ” f a l s e ”

useJmx= ” t rue ” p e r s i s t e n t = ” t r ue ” da taD i rec to ry = ” activemq−data ”
xmlns= ” h t t p : / / activemq . apache . org / schema / core ”>

<t ranspor tConnectors>
<t ranspor tConnector name= ”vm” u r i = ” vm: / / pofBroker ” />
<t ranspor tConnector name= ” tcp ” u r i = ” t c p : / / 0 . 0 . 0 . 0 :61616 ” />

< / t ranspor tConnectors>
< / broker>

<bean i d = ” pooledConnect ionFactory ”
c lass= ” org . apache . activemq . pool . PooledConnect ionFactory ”
destroy−method= ” stop ”>

<proper ty name= ” connect ionFactory ”>
<bean c lass= ” org . apache . activemq . ActiveMQConnectionFactory ”>

<proper ty name= ” brokerURL ” value= ” vm: / / pofBroker ” />
< / bean>

< / p roper ty>
< / bean>

<bean i d = ” scheduler . queue ”
c lass= ” org . apache . activemq .command . ActiveMQQueue ”>

<cons t ruc to r−arg value= ”SCHEDULER.QUEUE” />
< / bean>

<bean i d = ” p rese rva t i on . queue ”
c lass= ” org . apache . activemq .command . ActiveMQQueue ”>

Page 78 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

<cons t ruc to r−arg value= ”PRESERVATION.QUEUE” />
< / bean>
<bean i d = ” create . c o l l e c t i o n . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”CREATE.COLLECTION.QUEUE” />

< / bean>
<bean i d = ” image . ana lys i s . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”IMAGE. ANALYSIS .QUEUE” />

< / bean>
<bean i d = ” log . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”LOG.QUEUE” />

< / bean>
<bean i d = ” t e s t . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”TEST.QUEUE” />

< / bean>
<bean i d = ” e r r o r . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”ERROR.QUEUE” />

< / bean>
<bean i d = ” dead . end . queue ”

c lass= ” org . apache . activemq .command . ActiveMQQueue ”>
<cons t ruc to r−arg value= ”DEAD.END.QUEUE” />

< / bean>

<bean i d = ” r e a c t i v a t i o n . n o t i f i c a t i o n . t o p i c ”
c lass= ” org . apache . activemq .command . ActiveMQTopic ”>

<cons t ruc to r−arg value= ”REACTIVATION . NOTIFICATION . TOPIC” />
< / bean>
<bean i d = ” p rese rva t i on . n o t i f i c a t i o n . t o p i c ”

c lass= ” org . apache . activemq .command . ActiveMQTopic ”>
<cons t ruc to r−arg value= ”PRESERVATION. NOTIFICATION . TOPIC” />

< / bean>

<bean i d = ” scheduler ” c lass= ” eu . f o r g e t i t . middleware . component . Scheduler ” />
<bean i d = ” idManager ” c lass= ” eu . f o r g e t i t . middleware . component . IDManager ” />
<bean i d = ” c o l l e c t o r ” c lass= ” eu . f o r g e t i t . middleware . component . C o l l e c t o r ” />
<bean i d = ” e x t r a c t o r ” c lass= ” eu . f o r g e t i t . middleware . component . E x t r a c t o r ” />
<bean i d = ” c o n t e x t u a l i z e r ”

c lass= ” eu . f o r g e t i t . middleware . component . Con tex tua l i ze r ” />
<bean i d = ” a r ch i ve r ” c lass= ” eu . f o r g e t i t . middleware . component . Arch ive r ” />
<bean i d = ” condensator ” c lass= ” eu . f o r g e t i t . middleware . component . Condensator ” />
<bean i d = ” f o r g e t t o r ” c lass= ” eu . f o r g e t i t . middleware . component . Fo rge t t o r ” />
<bean i d = ” logger ” c lass= ” eu . f o r g e t i t . middleware . broker . MessageLogging ” />

The configuration of Apache Camel using Spring XML is straightforward. An example of
message route for the Scheduler is shown above. In Listing 3 we provide an excerpt of a
sample configuration which defines the messaging broker and the route for two workflows:
preservation preparation and re-activation. Each workflow is represented as a sequence
of steps associated to specific Spring beans corresponding to the middleware compo-
nents. During a given step, the method of the Java class defined in the configuration is

c© ForgetIT Page 79 (of 126)

ForgetIT Deliverable D8.6

invoked. The Spring XML representation is associated to different patterns and defines a
language for implementing specific rules associated to the messages.

Listing 3: Apache Camel configuration
<bean i d = ” activemq ”

c lass= ” org . apache . activemq . camel . component . ActiveMQComponent ”>
<proper ty name= ” brokerURL ” value= ” vm: / / pofBroker ” />

< / bean>

<camelContext xmlns= ” h t t p : / / camel . apache . org / schema / spr ing ”>

<onException>
<except ion>eu . f o r g e t i t . middleware . Workf lowException< / except ion>
<r e d e l i v e r y P o l i c y maximumRedeliveries= ” 2 ” />
<to u r i = ” activemq:queue:ERROR .QUEUE” />

< / onException>

<rou te i d = ” schedulerRoute ”>
< !−− OMITTED, SEE ABOVE −−>

< / rou te>

<rou te i d = ” preservat ionRoute ”>
<from u r i = ” activemq:queue:PRESERVATION .QUEUE” />
<setHeader headerName= ” taskSta tus ”>

<constant>RUNNING< / constant>
< / setHeader>

<bean r e f = ” idManager ” method= ” generateID ” />
<bean r e f = ” c o l l e c t o r ” method= ” getResources ” />
<removeHeaders pa t t e rn = ” iamUserID ” />
<setHeader headerName= ” iamType ”>

<constant>ALL< / constant>
< / setHeader>
<bean r e f = ” e x t r a c t o r ” method= ” imageAnalysis ” />
<bean r e f = ” c o n t e x t u a l i z e r ” method= ” c o n t e x t u a l i z e ” />
<setHeader headerName= ” minCluster ingImages ”>

<constant>10< / constant>
< / setHeader>
<bean r e f = ” condensator ” method= ” imageCluster ing ” />
<bean r e f = ” a r ch i ve r ” method= ” createPackage ” />
<bean r e f = ” a r ch i ve r ” method= ” ingestSIP ” />
<bean r e f = ” a r ch i ve r ” method= ” exportAIP ” />
<bean r e f = ” a r ch i ve r ” method= ” storeAIP ” />
<setHeader headerName= ” taskSta tus ”>

<constant>COMPLETED< / constant>
< / setHeader>
<m u l t i c a s t>

<to u r i = ” activemq:topic:PRESERVATION . NOTIFICATION . TOPIC” />
<to u r i = ” activemq:queue:SCHEDULER .QUEUE” />

< / m u l t i c a s t>

< / rou te>

<rou te i d = ” reAc t i va t ionRou te ”>
<from u r i = ” activemq:queue:REACTIVATION .QUEUE” />

Page 80 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

<setHeader headerName= ” taskSta tus ”>
<constant>RUNNING< / constant>

< / setHeader>
<bean r e f = ” a r ch i ve r ” method= ” reac t i va teA IP ” />
<bean r e f = ” c o l l e c t o r ” method= ” res to re ” />
<setHeader headerName= ” taskSta tus ”>

<constant>COMPLETED< / constant>
< / setHeader>
<m u l t i c a s t>

<to u r i = ” activemq:topic:REACTIVATION . NOTIFICATION . TOPIC” />
<to u r i = ” activemq:queue:SCHEDULER .QUEUE” />

< / m u l t i c a s t>
< / rou te>

<rou te i d = ” per iod icSchedulerRoute ”>
<from u r i = ” t i m e r : p o f ?per iod =600s& delay=180s ” />
<t rans form>

<simple>
Scheduler Test Routing Message − ${date:now:yyyy−MM−dd HH:mm:ss}

< / s imple>
< / t rans form>
<setHeader headerName= ” taskSta tus ”>

<constant>COMPLETED< / constant>
< / setHeader>
<to u r i = ” activemq:queue:SCHEDULER .QUEUE” />

< / rou te>

<rou te i d = ” errorRoute ”>
<from u r i = ” activemq:queue:ERROR .QUEUE” />
<to u r i = ” activemq:queue:SCHEDULER .QUEUE” />

< / rou te>

< / camelContext>

The flow control makes use of message headers: setting the header of an incoming mes-
sage to a given value, can influence the way the message is processed by the other
components. The multicast element (in opposition to the splitter) and the trans-
form element are used to implement other patterns (see [Hohpe and Woolf, 2003]). It is
worth noting that the code exceptions and any error during the workflow execution are
properly handled: the error messages are sent to the Scheduler to be processed and to
a dedicated error queue used for monitoring.

Finally, a route executing periodic tasks is also shown: currently this is just used to send
heartbeat messages, scheduled every 10 minutes, but for the future this mechanism could
be used to implement periodic tasks associated to preservation or to monitor specific
information associated to the content and trigger some pre-defined processes.

c© ForgetIT Page 81 (of 126)

ForgetIT Deliverable D8.6

PoF Middleware Web Console

The monitoring interface for the messaging system and the routing engine is based on
hawtio20, a web monitoring console based on HTML5 that integrates seamlessly with
ActiveMQ and Camel: this graphical console replaces the old ActiveMQ GUI and is mul-
tipurpose.

The flow of messages in the different queues, updated in real time during workflow exe-
cution, is shown in Figure 15 in Section 4.

Additional screenshots of the hawtio console for the middleware instance running in the
testbed are shown in the following Figures: the status of queues and messages in the
broker (Figure 29); the processes and threads running in the broker ((Figure 30); the
routes defined in Camel using Spring XML, described before (Figure 31); .

Figure 29: Message queues monitoring.

20hawtio - http://hawt.io

Page 82 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Figure 30: Process monitoring.

Figure 31: Routes monitoring.

c© ForgetIT Page 83 (of 126)

ForgetIT Deliverable D8.6

Extractor

In the following, an excerpt of Java code take from the Extractor component is shown:
the method for image analysis used in the Apache Camel route defined above makes
use of Exchange class, which is part of the Camel APIs and contains the message
information (header and body). The message header is typically used to share high-
level information required for flow control, while the message body contains the data. In
the current implementation, we use JSON format to represent message content. After
processing the message, extracting information and obtaining some results, the message
body and header can be updated and then passed to the flow control wrapped in the
Exchange object. Following the asynchronous message approach, the next destination
of the message is unknown to the Extractor class, the new message is sent to one of
the instances of the next component in the flow using the route definition (in the example
above, it is the Contextualizer component).

Listing 4: Component methods for messages
package eu . f o r g e t i t . middleware . component ;

. . .
import org . apache . camel . Exchange ;
. . .
import eu . f o r g e t i t . middleware . component . Scheduler . TaskStatus ;

public class E x t r a c t o r {

. . .

@BeanInject
private Scheduler scheduler ;

. . .

public void imageAnalysis (Exchange exchange){

. . .

Map<St r ing , Object> headers = MessageTools . getHeaders (exchange) ;

S t r i n g task Id = (S t r i n g) headers . get (” t ask Id ”) ;
scheduler . setTaskStatus (task Id , TaskStatus .RUNNING) ;
scheduler . setTaskLastStep (task Id , ” IMAGE ANALYSIS”) ;
LocalDateTime lastDateTime = LocalDateTime . now () ;
scheduler . setTaskLastDateTime (lastDateTime) ;

exchange . ge t In () . setHeaders (headers) ;

S t r i n g iamType = (S t r i n g) headers . get (” iamType ”) ;

. . .

JsonObject jsonBody = MessageTools . getBodyAsJSON (exchange) ;

Page 84 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

i f (jsonBody != nul l){

/ / processing message body (JSON format)
/ / new r e s u l t s are appended to the body

exchange . ge t In () . setBody (jsonBody . t o S t r i n g ()) ;

} else {

headers . put (” taskSta tus ” , TaskStatus . FAILED . t o S t r i n g ()) ;
exchange . ge t In () . setHeaders (headers) ;

}

}

c© ForgetIT Page 85 (of 126)

ForgetIT Deliverable D8.6

B Preserve-or-Forget RESTful Service

The PoF REST APIs are published using Jersey21, the reference implementation of JAX-
RS specification for RESTful web services. In the following we list some APIs with the
expected parameters and the output format. The full list of REST APIs is available in the
code documentation.

Server path /rest-api
Supported response types JSON and XML

Table 4: Server information

GET /rest-api/rest-
api/application.wadl?detail=true

Returns the list of REST APIs in
WADL format, it is automatically up-
dated by Jersey when starting up
the server.

Table 5: Server APIs List

Other access APIs used for indexing and searching Situations have been omitted here.
They are described in the code documentation.

The list of APIs exposed by the PoF Middleware RESTful web server is available as W3C
WADL format.

21Java Jersey - https://jersey.java.net

Page 86 (of 126) www.forgetit-project.eu

https://jersey.java.net

Deliverable D8.6 ForgetIT

POST /resource Triggers Preservation Preparation
Workflow of single items or collec-
tions. Requires PV, CMIS Reposi-
tory ID and CMIS Object ID.

POST /resources//{cmisServerId} Triggers Preservation Preparation
Workflow for many resources (bulk
request). Requires CMIS Repos-
itory ID and a list CMIS Object
IDs with additional information in a
JSON object.

POST /user-logs Triggers Fetching of User Logs for
computing PV in the Middleware
during Automatic Preservation. Re-
quires CMIS Repository ID and
CMIS Object ID.

POST /cmis-repository Register a new Active System
with its associated CMIS reposi-
tory. Requires CMIS Repository ID
and other configuration parameters
(e.g. repository URL).

GET /cmis-repository/{cmisServerId} Returns information about the reg-
istered CMIS repository. Requires
CMIS Repository ID.

GET /resources/{cmisServerId}/last-
update

Used by the Active System to
get information about the pre-
served resources and trigger auto-
matic preservation. Requires CMIS
Repository ID.

Table 6: Preservation APIs

GET /restore/{cmisServerId}/{cmisId} Triggers Re-activation Workflow for
specified resource. Requires CMIS
Repository ID and CMIS Object ID.

GET /restore?cmisServerId=...&cmisId=... Same as above but supporting
Query Params.

Table 7: Re-activation APIs

c© ForgetIT Page 87 (of 126)

ForgetIT Deliverable D8.6

GET /resource/cmisServerId/cmisId Returns information about
preserved resource (different
IDs,preservation status, metadata).
Requires CMIS Repository ID and
CMIS Object ID.

GET /resource?cmisServerId=...&cmisId=... Same as above but supporting
Query Params.

GET /resources/cmisServerId Returns information about pre-
served resources for the specified
CMIS Repository. Requires CMIS
Repository ID.

Table 8: Access APIs

GET /tasks/taskId/status Returns information for the speci-
fied Task. Task ID is returned when
submitting requests.

GET /tasks/taskId/result Returns results for the specified
Task. Alternative method to mes-
sage notifications. Task ID is re-
turned when submitting requests.

GET /tasks Returns information for all Tasks.
Only for administrative purposes.

Table 9: Task Monitoring APIs

Page 88 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

C DSpace Installation and Configuration

C.1 Introduction

Information about DSpace can be found on the project web site22. The role of DSpace
in the PoF Framework and the integration with the other components in the overall ar-
chitecture is described in deliverable D8.1 [Gallo et al., 2013]. Additional information can
be found in D7.2 [Rabinovici-Cohen et al., 2014] (integration with cloud storage) and in
D5.2 [Nilsson et al., 2014] (synergetic preservation workflows). This guide is based on
official DSpace documentation23, tailored to Ubuntu Server 12.04 LTS, with additional
configuration information for the PoF Framework. Other applications and libraries re-
quired to install and run DSpace are Apache Maven24 and Apache Ant25 for compiling
and building DSpace sources, PostgreSQL26 as internal DB used by DSpace and Apache
Tomcat27 for the runtime.

C.2 Installation Procedure

The following instructions have been tested with DSpace 4.1. If you are using a different
version of DSpace, you should check the documentation available on DSpace web site.
In order to install DSpace using the following instructions, you need a basic installation of
Ubuntu Server 12.04 LTS. Please refer to Ubuntu documentation for the installation of the
operating system. You can use a physical or virtual machine for installing Ubuntu, as done
for example in the ForgetIT testbed. In the following we assume that you have installed
Ubuntu and that you have access to the machine using either the root user or any user
belonging to the sudo group. During the Ubuntu installation, it is advisable to include an
OpenSSH server as additional software, mainly if you are installing DSpace in a virtual
machine hosted by a remote server. Please note that in the instructions below, after the
creation of the DSpace user, you need to start DSpace and apply any modifications to the
DSpace configuration using this user only, who must also have writing permissions for all
the directories used by DSpace.

Configuration of Ubuntu

From within a terminal, update the Ubuntu installation and reboot the machine:
$ sudo apt−get update
$ sudo apt−get upgrade
$ sudo reboot now

22DSpace - http://www.dspace.org
23DSpace Guide - https://wiki.duraspace.org/display/DSDOC/All+Documentation
24Apache Maven - http://maven.apache.org
25Apache Ant - - http://ant.apache.org
26PostgreSQL - http://www.postgresql.org
27Apache Tomcat - http://tomcat.apache.org

c© ForgetIT Page 89 (of 126)

http://www.dspace.org
https://wiki.duraspace.org/display/DSDOC/All+Documentation
http://maven.apache.org
http://ant.apache.org
http://www.postgresql.org
http://tomcat.apache.org

ForgetIT Deliverable D8.6

Install the Java JDK 728 and Apache Maven with the following command:
$ sudo apt−get i n s t a l l openjdk−7−j dk maven

Check the Maven installation running:
$ mvn −vers ion

You should get an output similar to the following:
Apache Maven 3 .0 .4
Maven home : / usr / share / maven
Java vers ion : 1 .7 .0 51 , vendor : Oracle Corporat ion
Java home : / usr / l i b / jvm / java−7−openjdk−amd64
Defau l t l o c a l e : i t I T , p la t f o rm encoding : UTF−8
OS name : ” l i n u x ” , vers ion : ”3.8.0−35− gener ic ” , arch : ”amd64 ” ,
f a m i l y : ” un ix ”

Since Maven on Ubuntu server will add version 6 of Java Runtime Environment as addi-
tional dependency, configure JRE in order to use version 7 (for Java compiler and other
Java related utilities the used version should already be 7):

$ sudo update−a l t e r n a t i v e s −−con f i g java

and select version 7 when prompted (option 2 in the example below):
There are 2 choices f o r the a l t e r n a t i v e java (p rov id ing / usr / b in / java) .

Se lec t i on Path P r i o r i t y Status
−−−
∗ 0 / usr / l i b / jvm / java−6−openjdk−amd64 / j r e / b in / java 1061 auto mode

1 / usr / l i b / jvm / java−6−openjdk−amd64 / j r e / b in / java 1061 manual mode
2 / usr / l i b / jvm / java−7−openjdk−amd64 / j r e / b in / java 1051 manual mode

Press enter to keep the cu r ren t choice [∗] , or type s e l e c t i o n number : 2

Install Apache Web Server, including the proxy module (Apache WS will act as a proxy
to forward the requests to the DSpace web applications running on Tomcat, while static
content, such URLs for published AIP files, will be managed by Apache WS itself):

$ sudo apt−get i n s t a l l apache2 l ibapache2−mod−proxy−html
l ibxml2−dev

Install libraries for file compression (zip, p7zip-full, p7zip-rar): some of the previous li-
braries are not mandatory, but can be useful for testing DSpace locally, e.g. creating zip
files for the SIP or to open exported AIPs.

Install tools for CIFS, to mount storage folder on external devices (e.g. NAS). NFS or
iSCSI could be used, too.

$ sudo apt−get i n s t a l l c i f s−u t i l s

The automatic creation of new mount points must be added to /etc/fstab file, depend-
ing on your configuration.

28Open JDK - http://openjdk.java.net

Page 90 (of 126) www.forgetit-project.eu

http://openjdk.java.net

Deliverable D8.6 ForgetIT

Create “dspace” user

Create a new Linux user named dspace (with password dspace) and add it to the sudo-
ers group with the following commands:

$ sudo adduser dspace
$ sudo adduser dspace sudo

From now on, switch to DSpace user dspace: you can either logout and then login again
with user dspace or simply use the following command as root:

$ su dspace

Install and configure PostgreSQL 9.1

DSpace currently supports PostgreSQL and Oracle DB. PostgreSQL is the default choice
and no additional drivers or adapters have to be added. Instructions below refer to the
default installation with PostgreSQL. If you want to use Oracle DB please refer to the
documentation available in the official DSpace documentation.

Install PostgreSQL and check the installation with the following commands:
$ sudo apt−get i n s t a l l pos tgresq l −9.1
$ psql − vers ion

Edit PostgreSQL configuration files as described below:

• postgresql.conf in /etc/prostgresql/9.1/main/ : uncomment the line containing: lis-
ten addresses = ’localhost’ and edit the line to listen on all addresses, listen ad-
dresses = ’*’

• pg hba.conf in /etc/prostgresql/9.1/main/ : add the lines host dspace dspace 127.0.0.1
255.255.255.255 md5 and host all all 127.0.0.1/24 trust.

Restart PostgreSQL:
$ sudo serv i ce pos tg resq l r e s t a r t

Switch to user root and then switch to user postgres:
$ sudo su −
$ su postgres

Create a new user for PostgreSQL, with username dspace and password dspace (this
user is different from the one created on Ubuntu and can be changed in the DSpace
configuration):

$ createuser −U postgres −d −A −P dspace

Create a new PostgreSQL DB schema, named dspace, owned by the dspace Post-
greSQL user created above:

$ createdb −−owner=dspace −−encoding=UNICODE dspace

c© ForgetIT Page 91 (of 126)

ForgetIT Deliverable D8.6

Switch back to Ubuntu user dspace issuing twice the shell command exit.

Create a folder for copying source files of the required applications and for setup. The
suggested configuration is to create a folder under /opt and to assign ownership to
dspace user, as shown below:

$ sudo mkdir / opt / f o r g e t i t
$ sudo chown −R dspace : dspace / opt / f o r g e t i t
$ mkdir / opt / f o r g e t i t / a p p l i c a t i o n s
$ mkdir / opt / f o r g e t i t / setup

Install Apache Tomcat 7

Install Apache Tomcat 7 as user dspace created in the previous section. Download
Tomcat 7, e.g. using the following command (check the link for the current version):

$ cd / opt / f o r g e t i t / a p p l i c a t i o n s
$ wget −O apache−tomcat −7.0.52. t a r . gz

h t t p : / / apache . panu . i t / tomcat / tomcat−7/v7 . 0 . 5 2 / b in / apache−tomcat
−7.0.52. t a r . gz

or copy the .tar.gz file downloaded with another machine using scp command (you need
an OpenSSH server running, see instructions above).

Uncompress the Tomcat tar.gz file into directory /opt/forgetit/tomcat7 (in the fol-
lowing this directory will be referred to as [Tomcat Install Dir]) :

$ t a r −xzv f apache−tomcat −7.0.52. t a r . gz −C / opt / f o r g e t i t
$ mv apache−tomcat−7.0.52 tomcat7

Instructions to configure a service for Tomcat to start at boot are provided in the last
section. Edit the Tomcat 7 configuration as described below:

• create file setenv.sh in [Tomcat Install Dir]/bin and set JAVA OPTS=”-Xmx512M -
Xms64M -XX:MaxPermSize=256M -Dfile.encoding=UTF-8”

• Edit file server.xml in [Tomcat Install Dir]/conf adding a configuration option to the
Connector element: URIEncoding=”UTF-8”

Install DSpace 5.2

Download DSpace 5.2 from DSpace web site, e.g. using the following command (check
the link for the current version):

$ cd / opt / f o r g e t i t / a p p l i c a t i o n s
$ wget −O dspace−5.2−src−re lease . z ip h t t p : / / sourceforge . net / p r o j e c t s / dspace / f i l e s / DSpace%20Stable / 5 . 2 / dspace−5.2−src−re lease . z ip / download /

As dspace user unpack the DSpace tar.gz file. The extracted folder (e.g. dspace-
4.1-src-release) will be referenced to as [dspace-source] in the following. Cre-
ate a directory to install DSpace, e.g. /opt/forgetit/dspace-4.1, referred to as
([dspace-install]):

Page 92 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

$ cd / opt / f o r g e t i t / a p p l i c a t i o n s
$ t a r −xzv f dspace−5.2−src−re lease . z ip
$ mkdir / opt / f o r g e t i t /\emph{ [dspace− i n s t a l l]}
$ cd / opt / f o r g e t i t / a p p l i c a t i o n s /\emph{ [dspace−source]

Configure file build.properties, editing the following properties:

• dspace.install.dir pointing to [dspace-install]

• dspace.hostname = [HOSTNAME] (set it to the hostname chosen during the in-
stallation, e.g. archive. Compare with hostname in file /etc/hosts or with envi-
ronment variable HOSTNAME)

• dspace.baseUrl = http://[HOSTNAME]:8080

• dspace.name = DSpace for Preserve-or-Forget Framework (or any other name
which is meaningful for you)

• mail.server = YOUR MAIL SERVER

• mail.from.address = dspace-admin@forgetit-project.eu (or change ac-
cording to your configuration)

• mail.feedback.recipient = CONTACT USER EMAIL

• mail.admin = DSPACE ADMIN EMAIL

• uncomment the line handle.canonical.prefix = $dspace.url/handle/ and
comment the line handle.canonical.prefix = http://hdl.handle.net/,
unless you want to subscribe to the handle service by CNRI

• handle.prefix = ANY VALUE (use official prefix from handle service if available)

All properties above but the installation directory can be modified later, editing file dspace.cfg

Compile using Maven and install using Ant, with the following commands:
$ cd [dspace−source]
$ mvn package
$ cd [dspace−source] / dspace / t a r g e t / dspace−[ve rs ion]− b u i l d
$ ant f r e s h i n s t a l l

DSpace is installed in the specified directory [dspace-install].

Create an admin account for DSpace:
$ cd [dspace− i n s t a l l]
$. / b in / dspace create−a d m i n i s t r a t o r

Deploy the created web applications (copy [dspace-install]/webapps content or
create symlinks for all DSpace web applications in Tomcat webapps folder).

Start Tomcat 7 as dspace user (see Tomcat documentation for starting and stopping the
server) and check the DSpace installation. Verify that DSpace is up and running at the
following URLs (change archive.forgetit-project.eu with correct host):

c© ForgetIT Page 93 (of 126)

ForgetIT Deliverable D8.6

• check DB connection with command: $./bin/dspace test-database

• check email settings: $./bin/dspace test-email

• http://archive.forgetit-project.eu:8080/jspui (JSP-based interface)

• http://archive.forgetit-project.eu:8080/xmlui (XML-based interface)

• sign in with administrator account created above on DSpace web interface

• try to create collections, new items, etc. (see instructions for Getting Started on
DSpace web site)

To customize the home page of the XMLUI interface, edit file /opt/forgetit/dspace-
4.1/config/news-xmlui.xml.

Optional configuration for Apache Web Server and Apache Tomcat

Apache WS can be configured to act as a reverse proxy for Tomcat (requests to DSpace
are proxied by Apache WS and viceversa). Static content (e.g. AIP files exported from
DSpace) is served by Apache WS.

Check that the proxy module is installed (see section about Ubuntu environment configu-
ration) and enabled. Use command sudo a2enmod proxy http and restart with sudo
service apache2 restart).

Add the following directives to file /etc/apache2/sites-available/default, for
each one of the applications in webapps to be proxied:

ProxyPass / xmlu i h t t p : / / a rch ive :8080/ xmlu i
ProxyPassReverse / xmlu i h t t p : / / a rch ive :8080/ xmlu i

According to the example above, the new URL of DSpace XML interface will be http:
//archive/xmlui.

Tomcat 7 can be configured to start at boot. Paste the example script below to a text file
tomcat7 and copy it to /etc/init.d, then execute command:

$ update−rc . d <nomescript> d e f a u l t s

The script must be executable (use chmod command: $ sudo chmod ugo+rx tom-
cat7). Note that in the provided example Tomcat is run as user dspace.
#! / b in / sh

BEGIN INIT INFO
Provides : Tomcat7
Required−S t a r t : $remote fs $syslog
Required−Stop : $remote fs $syslog
Defau l t−S t a r t : 2 3 4 5
Defau l t−Stop :
Short−Desc r i p t i on : Tomcat7
END INIT INFO

Page 94 (of 126) www.forgetit-project.eu

http://archive.forgetit-project.eu:8080/jspui
http://archive.forgetit-project.eu:8080/xmlui
http://archive/xmlui
http://archive/xmlui

Deliverable D8.6 ForgetIT

set −e
. / l i b / l sb / i n i t −f u nc t i o ns
TOMCAT HOME=/ opt / tomcat7
TOMCAT USER=dspace

case ” $1 ” i n
s t a r t)

log daemon msg ” S t a r t i n g Tomcat7 ”
su − $TOMCAT USER −c ”$TOMCAT HOME/ b in / s t a r t u p . sh > / dev / n u l l ”
log end msg 0
; ;

stop)
log daemon msg ” Stopping Tomcat7 ”
su − $TOMCAT USER −c ”$TOMCAT HOME/ b in / shutdown . sh > / dev / n u l l ”
log end msg 0
; ;

re load | force−re load)
; ;

r e s t a r t)
; ;

∗)
log ac t ion msg ” Usage : / e tc / i n i t . d / tomcat7 { s t a r t | stop | re load | force−
re load | r e s t a r t | t r y−r e s t a r t | s ta tus } ” | | t r ue
e x i t 1

esac

e x i t 0

C.3 DSpace REST API

The REST API is an interface intended for administration of DSpace environment. From
the DSpace 5.x version, it is possible to perform all CRUD actions; in the previous release
only read features were allowed. The REST DSpace frees the administration from what
GUI is used by the users: in this way it is possible to change the aspect of DSpace
without modifying the system, so that the administrators don’t perceive any changes in
the environment management. All the actions that will be explained in this section are
based on cURL syntax 29. The main cURL requests used for DSpace are:

• GET for obtaining all the information about DSpace objects

• POST for modifying or adding Communities, Collections, Items, Metadata, Bitstreams
and Access Policies

• OPTIONS for displaying all the actions allowed at a specified level

• DELETE for deleting the desired elements

As previously told, the GET request is used for obtaining the information about a DSpace
object. The administrator can choose how to display these contents: they could be orga-
nized in a json script or in a xml one.

If the admin choose json:

29cURL - http://curl.haxx.se/docs/manpage.html

c© ForgetIT Page 95 (of 126)

http://curl.haxx.se/docs/manpage.html

ForgetIT Deliverable D8.6

$ curl -s -H "Accept: application/json"
http://preservation-system:8080/rest/communities

If XML is chosen:

$ curl -s -H "Accept: application/xml"
http://preservation-system:8080/rest/communities

The GET word can be omitted: when a curl request is done, if there are no requests
specified, it means that a GET is required.
From this point, it is assumed that the base URL to the ”REST” webapp will be http :
//preservation − system : 8080/rest. The following parts of /rest/... are specific to what
kind of objects the administrator wants to obtain or modify.

The first thing to do for accessing to reserved material is to login to the system: the
request used in this case is POST.

The correct syntax is the following:

$ curl -X POST -H "Content-Type: application/json"
--data ’{"email":"user@email.com","password": "userpassword"}’
http://preservation-system:8080/rest/login

A message is displayed, containing a code like d9e103cl−8248−4b52−av5b−436c9edce4b2.
It contains the created username and password values. This will be used in the next steps
for performing the administration actions.

The logout is an example of the use of this code:

$ curl -X POST -H "Content-Type: application/json" -H
"rest-dspace-token:d9e103cl-8248-4b52-av5b-436c9edce4b2"
http://preservation-system:8080/rest/logout

The previously mentioned code is used in this way: ”rest − dspace − token : d9e103cl −
8248− 4b52− av5b− 436c9edce4b2”; The token will be fundamental for accessing or modi-
fying reserved objects.

Now it is possible to start creating a first Community with the POST request:

$ curl -X POST -H "Content-Type: application/json" --data
’{"name":"TEST COMMUNITY","copyrightText":"NEW COMMUNITY (JSON)",
"introductoryText":NEW COMMUNITY (JSON)","shortDescription":
"NEW COMMUNITY (JSON)","shortDescription":"NEW COMMUNITY (JSON)",

Page 96 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

"sidebarText":"NEW COMMUNITY (JSON)"}’ -H "rest-dspace
token:d9e103cl-8248-4b52-av5b-436c9edce4b2" http://preservation-
system:8080/rest/communities

The Content− Type field is used for specifying what kind of data will be used for defining
the Community, so that the −− data parameter expects a json.

For creating a Collection:

$ curl -X POST -H "Content-Type: application/json"
--data ’{"name":"TEST COLLECTION","copyrightText":
"NEW COLLECTION (JSON)","introductoryText":"NEW COLLECTION (JSON)",
"shortDescription":"NEW COLLECTION (JSON)","sidebarText":
"NEW COLLECTION (JSON)"}’ -H "rest-dspace-token:
d9e103cl-8248-4b52-av5b-436c9edce4b2"
http://preservation-system/rest/communities/COMMUNITY_ID/collections

The administrator can create Items now. Differently from the GUI Items, in the REST API
the administrator has to create the Item like a sort of container where, in a second step,
he could put the Bitstreams.

$ curl -X POST -H "Content-Type:application/json"
--data ’{"metadata":[{"key": "dc.contributor.author",
"value": "SURNAME, NAME"},{"key": "dc.description",
"language": "en_US","value": "DESCRIPTION"},
{"key": "dc.description.abstract","language": "en_US",
"value": "ABSTRACT"},{"key": "dc.title","language": "en_US",
"value": "TEST ITEM"}]}’
-H "rest-dspace-token:d9e103cl-8248-4b52-av5b-436c9edce4b2"
http://192.168.253.13/rest/collections/COLLECTION_ID/items

The Item is ready to be filled with documents (Bitstreams). For uploading documents the
following requests has been used:

The first method works for plain text or .pdf documents:

$ curl -k -H "rest-dspace-token: d9e103cl-8248-4b52-
av5b-436c9edce4b2" -F upload=@"/path/to/document/
documentname.[ext]" -X POST http://preservation-
system:8080/rest/items/ITEM_ID/bitstreams?
name=TEST.[ext]&description=DESCRIPTION

The -k is used for maintaining active the connection even if it is insecure.

c© ForgetIT Page 97 (of 126)

ForgetIT Deliverable D8.6

$ curl -k -H "rest-dspace-token: d9e103cl-8248-4b52-
av5b-436c9edce4b2" --data-binary @"/path/to/document
/documentname.jpg" -X POST "http://preservation-system:
8080/rest/items/65/bitstreams?name=TEST.jpg"

I used this last method especially for images, but it works with other kind of documents,
too. The advantage of this second kind of request is the ease of use because of its brevity
and the compatibility with more file extensions. It is possible to store more than one Bit-
stream in an Item and everyone can be of a different extension.

Once that objects are created, they can be modified and the admin can add some fea-
tures to existing elements.

The POST request allows to add and modify elements, too. For example, if the adminis-
trator wants to modify the Metadata of an Item, the request is the following:

$ curl -X POST -H "rest-dspace-token: d9e103cl-8248-4b52-
av5b-436c9edce4b2" -H "Content-Type: application/json"
--data ’[{"key":"dc.title","value":"TEST - MODIFIED",
"language":"en_US"},{"key":"dc.description","value":
"DESCRIPTION","language": "en_US"}]’
http://preservation-system:8080/rest/items/ITEM_ID/metadata

The administrator can decide if a user will be able to read or modify an Item. The Per-
mission Policies, responsible for Bitstreams accessibility, can be managed even from the
REST API. The admin can delete or add policies to Bitstreams. For objects added from
DSpace REST API the users can read everything by defaults. If the administrator wants
to deny the access to some data, he has to DELETE the relative policy:

curl -X DELETE -H "rest-dspace-token: d9e103cl-8248-4b52-
av5b-436c9edce4b2" http://preservation-system:
8080/rest/bitstreams/BITSTREAM_ID/policy/POLICY_ID

If the admin wants to give the permission of modifying Items to an user, a POST request
has to be done for adding to the interested Bitstream a WRITE policy.

$ curl -X POST -H "rest-dspace-token: d9e103cl-8248-4b52-
av5b-436c9edce4b2" --data ’{"id": POLICY_ID,"action": "WRITE",
"epersonId": -1, "groupId": 0, "resourceId": BITSTREAM_ID,
"resourceType": "bitstream","rpDescription": null,
"rpName": null,"rpType": "TYPE_INHERITED","startDate": null,
"endDate": null}’
http://preservation-system:8080/rest/bitstreams/BITSTREAM_ID/policy

Page 98 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

These are the main features that needed to be explained. For the complete list of possible
actions, see the official DSpace Guide https://wiki.duraspace.org/display/
DSDOC5x/REST+API.

C.4 Administration and Users Permissions

This section is intended to guide an administrator of a DSpace instance during the setting
of its environment. As seen in Section C.2, the administrator account has to be registered
during the installation steps.
The settings here illustrated explain how to allow some users to share documents, with
the possibility of adding and deleting every file shared in the common environment. The
elements and the images here shown for explaining the process refer to the xml interface.
The first step is the creation of at least a Community and a Collection, in order to have a
place for storing the Items. This is fundamental for going on with saving Items. Another
important step is the users creation. There are two different scenarios for user creation:

• The user register his account by himself

• The user account is created by the administrator

There are no differences between these two methods: the final effect is the same. A
communication is sent to the user e-mail, containing a link that addresses to a DSpace
session, in order to confirm the account registration.

When a new account has been created, the administrator adds the user to a group. The
groups are created by the administrator and their function is to include all users supposed
to have the same permissions pattern. The only default group that exists at the moment
of the environment creation is the Anonymous one: the administrator has to delete all the
permissions assigned to this group in order to hide private contents of the Collection to
foreign users. In fact, when a user registers his account to DSpace, it belongs by default
to Anonymous group: in this way, only when the administrator includes the new account
in a group the user will be able to access to Collections’ contents.
The permissions given to a group are fundamental to decide what can or cannot do the
users belonging to it. In DSpace the permissions are organized at different levels:

• Permissions at Community level: the users are able to read and write in a Commu-
nity

• Permissions at Collection level: the users’ available permissions are read, write,
add, delete. The best way to set an account for this kind of environment is to give all
these permissions. A user can create a new Collection or modify an old one but he
can’t delete one. The only one able to delete a Collection (or a Community) is the
administrator.

• Permissions at Item level: the possible and advisable permissions for Items are
read, write, obsolete (delete), add, delete (for both item and bitstream). In this way,

c© ForgetIT Page 99 (of 126)

https://wiki.duraspace.org/display/DSDOC5x/REST+API
https://wiki.duraspace.org/display/DSDOC5x/REST+API

ForgetIT Deliverable D8.6

the users can modify, delete, add items created by every member of the community.
The users with this permission pattern can add other files to Item’s Bitstream, even
in a second time, after the creation.

Figure 32: Permission pattern at Collection level

Another available permission for the users is the admin one: it is a lot different from
the administrator account permission option. The only things that this setting allows are
relative to metadata export and to the possibility to move an Item from a Collection to
another.

C.5 Import and Export

Another DSpace feature is the the preservation of the contents’ structure once they are
exported and imported. The possibility of exporting or importing entire Communities in
an environment is the key factor to preserve the desired contents without changing the
structure of the documents organization. The administrator can both export and import
Communities; the users with administration privilege can only make the export, as guar-
antee of the preservation and the general environmental maintenance.

Export

The Community/Collection is downloaded in a .zip file, containing, in case of a Com-
munity, some folders everyone corresponding to a Collection and every Collection folder
containing the Items’ sub-folders. When the user choose to export only a Collection the

Page 100 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

organization is the same but there is only the Collection folder containing its Items. The
content of the exported Items’ folders is a series of files, everyone involved in the preser-
vation of the contents:

• contents: this file contains the name of the documents that belong of the Item and
the name of the licence file

• dublin core.xml: this is the metadata file, containing all the information that allow the
preservation of the structure for data organization

• handle: in this file is specified the id previously used for the Collection

• licence.txt

• Filename.[ext]: the document contained in the Item

Figure 33: Export folder’s contents

Import

The administrator can import a .zip file containing a Community or a Collection. First of
all, if DSpace is completely empty, the admin has to create a Community and a Collection
for giving an address for storing new Items. After that, it will be possible to proceed with
the Import process. Every time an element is imported in a new DSpace environment, the
dublin core.xml file is automatically modified. Some information about the new destination
are added and the old ones are anyway preserved.

c© ForgetIT Page 101 (of 126)

ForgetIT Deliverable D8.6

Figure 34: Metadata before the Import

Figure 35: Metadata after the Import

C.6 Versioning and Other Features

The administrator can create a new version of an Item. After that, he has to give another
time the permission to users for the Item because of the changes. The users will be able
to choose what version of Item to use, selecting it from Show Version History. This is one
of the most interesting DSpace feature because it allows to update the contents making
possible to the users to see all the history of the Item contents without loosing the old
information.

DSpace has a lot of functionalities that could be useful in case of a document that, for
example, is not completely ready to be shown because of the need for some changes
and updates. For this aim, a user or the administrator can choose to hide an Item with the
Hide function: in this way, the element is not visible.

Page 102 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Figure 36: Available Versions of an Item’s contents

C.7 AntiVirus in DSpace: ClamAV

DSpace is intended as an environment for sharing and preserving documents. For not
losing the contents because of corrupted files or viruses, it could be fundamental to control
for the presence of something wrong in items’ metadata and bitstreams introduced by
the users. For the security of the general environment, the presence of an antivirus is
important. One of the most advisable for DSpace is ClamAV 30.
In this section, it is explained how to install and some way of use of ClamAV in Ubuntu.
For details about other OS, see ClamAV.

ClamAV has to be installed in the machine where DSpace is running. DSpace 5.x con-
template the use of this antivirus by default.
The steps for installing ClamAV are the following:

$ sudo apt−get update

$ sudo apt−get i n s t a l l clamav clamav−daemon

After the installation step, it is better to upgrade the list of viruses that could affect meta-
data and bitstream items:

$ sudo freshclam

30ClamAV - http://www.clamav.net/

c© ForgetIT Page 103 (of 126)

http://www.clamav.net/
http://www.clamav.net/

ForgetIT Deliverable D8.6

C.8 Curation Tasks

Now it is time to configure DSpace for curation tasks, the services provided by ClamAV
for scanning the contents of the Items. This is the configuration for DSpace 5.x. 31. For
previous versions see 32. It is from version 1.7 that DSpace supports curation tasks. The
configuration property file for curation is [dspace]/config/modules/curate.cfg:

p lug in . named . org . dspace . cura te . Curat ionTask = \
org . dspace . c task . genera l . NoOpCurationTask = noop , \
org . dspace . c task . genera l . P ro f i l eFormats = p r o f i l e f o r m a t s , \
org . dspace . c task . genera l . RequiredMetadata = requiredmetadata , \
org . dspace . c task . genera l . ClamScan = vscan , \
org . dspace . c task . genera l . M i c r o s o f t T r a n s l a t o r = t r a n s l a t e , \
org . dspace . c task . genera l . MetadataValueLinkChecker = check l inks

Curation Tasks from the Linux Shell

The curation tasks are made by default from the DSpace system. The control is made
at the step 1 of the workflow: in this way, if a user tries to add a corrupted Item to a
Collection, the dangerous content is blocked and a message is sent to the administrator,
for awareness of the possible risk.
Anyway, it is possible to control the Item bitstream or metadata with some easy shell
commands:
[dspace] / b in / dspace cura te − t vscan − i 123456789/4 −v

The instruction vscan is passed to -t for specifying the task that the administrator wants
to perform; the id of the item that has to be scanned, 123456789/4, is passed to the
-i argument. The instruction -v is for a verbose response: in this way, a message is
displayed after the curation task. The complete list of arguments is the following:

-t taskname: name of task to perform
-T filename: name of file containing list of tasknames
-e epersonID: (email address) will be superuser if unspecified
-i identifier: Id of object to curate. May be:
(1) a handle (2) a workflow Id (3) ’all’ to operate on the whole
repository
-q queue: name of queue to process - -i and -q are mutually

exclusive
-l limit: maximum number of objects in Context cache. If absent,

unlimited objects may be added.
-s scope: declare a scope for database transactions. Scope must be:
(1) ’open’ (default value) (2) ’curation’ (3) ’object’
-v emit verbose output
-r - emit reporting to standard out containing list of tasknames

31DSpace 5.x - https://wiki.duraspace.org/display/DSDOC5x/Curation+System
32DSpace - https://wiki.duraspace.org

Page 104 (of 126) www.forgetit-project.eu

https://wiki.duraspace.org/display/DSDOC5x/Curation+System
https://wiki.duraspace.org

Deliverable D8.6 ForgetIT

Administrative User Interface

It is also possible to activate a button in the xml interface for an easier execution of the
curation tasks. In DSpace 5.x is active by default. The script responsible for this feature
is in [dspace]/config/modules/curate.cfg, the same file mentioned in C.7

u i . tasknames = \
p r o f i l e f o r m a t s = P r o f i l e B i ts t ream Formats , \
requiredmetadata = Check f o r Required Metadata

Figure 37: Curation Task button is now available in DSpace interface

A message is displayed after the curation task:

Figure 38: Message displayed after the curation task

c© ForgetIT Page 105 (of 126)

ForgetIT Deliverable D8.6

C.9 Cloud Storage

In order to avoid unpleasant loss of DSpace contents, a backup of your environment
could be a good practice. Traditionally DSpace supports a backup and restore method
of database and bitstreams (the assetstores). It’s from DSpace 1.7 release that a new
an easier backup and restore method has been introduced. It consists of storing the ob-
jects in AIPs (Archival Information Packages) format, .zip files containing the bitstreams
and a file named mets.xml containing all metadata information. This format maintains the
environment hierarchy, respecting the dependencies between objects and allows at the
same time to add a new object in a new DSpace instance, even without old dependencies
maintenance, for example in case of insertion of a new Item in a preexisting Collection;
the permissions and ePersons are maintained, too, in case of a complete site backup and
restore.
Another advantage of this method is the ease of use. In case of traditional backup and
restore mode, a deep knowledge of the DSpace’s database and all its relations existing
between the different objects is required. With AIPs, the only things to do are the down-
load of the objects and restore or submit in a new DSpace instance. This is a very quick
and easy to apply practice, so that for a good maintenance of DSpace, it allows a daily
backup of new contents.

For making available these features, some configurations has to be done. For this guide,
a DSpace 5.2 version has been used (for more details 33). First of all, the pom.xml files
above specified has to be modified in the DSpace source directory (for brevity, dspace-
src):

dspace-src /dspace/modules/additions/pom.xml

dspace-src /dspace/pom.xml

dspace-src /dspace/modules/xmlui/pom.xml

The administrator has to add the following lines at the end of the ¡dependencies¿ sections,
just before the closing tag ¡/dependencies¿

<dependencies>
...

<!-- Adding this dependency will install the Replication Task Suite Addon -->
<dependency>

<groupId>org.dspace</groupId>
<artifactId>dspace-replicate</artifactId>
<version>1.3</version>

</dependency>
</dependencies>

33https://wiki.duraspace.org/display/DSPACE/ReplicationTaskSuite

Page 106 (of 126) www.forgetit-project.eu

https://wiki.duraspace.org/display/DSPACE/ReplicationTaskSuite

Deliverable D8.6 ForgetIT

Now, move to the [dspace-src]/dspace/config/modules/ folder. Some lines has to be
added to the file curate.cfg in the list ”Task Class Implementations” in order to enable
and configure the replication tasks (plugin.named.org.dspace.curate.CurationTask):

plugin.named.org.dspace.curate.CurationTask = \
... (YOUR EXISTING TASKS) ... , \
org.dspace.ctask.replicate.EstimateAIPSize = estaipsize, \
org.dspace.ctask.replicate.ReadOdometer = readodometer, \
org.dspace.ctask.replicate.TransmitAIP = transmitaip, \
org.dspace.ctask.replicate.TransmitSingleAIP = transmitsingleaip, \
org.dspace.ctask.replicate.VerifyAIP = verifyaip, \
org.dspace.ctask.replicate.FetchAIP = fetchaip, \
org.dspace.ctask.replicate.CompareWithAIP = auditaip, \
org.dspace.ctask.replicate.RemoveAIP = removeaip, \
org.dspace.ctask.replicate.METSRestoreFromAIP = restorefromaip, \
org.dspace.ctask.replicate.METSRestoreFromAIP = replacewithaip, \
org.dspace.ctask.replicate.METSRestoreFromAIP = restorekeepexisting, \
org.dspace.ctask.replicate.METSRestoreFromAIP = restoresinglefromaip, \
org.dspace.ctask.replicate.METSRestoreFromAIP = replacesinglewithaip

For giving a ”readable” name to the replication tasks, these lines are appended to the
preexisting in the tasknames section:

ui.tasknames = \
... (YOUR EXISTING TASK NAMES) ... , \
estaipsize = Estimate Storage Space for AIP(s), \
readodometer = Read Odometer, \
transmitaip = Transmit AIP(s) to Storage, \
verifyaip = Verify AIP(s) exist in Storage, \
fetchaip = Fetch AIP(s) from Storage, \
auditaip = Audit against AIP(s), \
removeaip = Remove AIP(s) from Storage, \
restorefromaip = Restore Missing Object(s) from AIP(s), \
replacewithaip = Replace Existing Object(s) with AIP(s), \
restorekeepexisting = Restore Missing Object(s) but Keep Existing Objects,\
restoresinglefromaip = Restore Single Object from AIP, \
replacesinglewithaip = Replace Single Object with AIP

Optionally, it is possible to divide the curation tasks in two subgroups according to their
purposes:

Tasks may be organized into named groups which display together in UI
drop-downs
ui.taskgroups = \

general = General Purpose Tasks, \

c© ForgetIT Page 107 (of 126)

ForgetIT Deliverable D8.6

replicate = Replication Suite Tasks

Group membership is defined using comma-separated lists of task names,
one property per group
ui.taskgroup.general = profileformats, requiredmetadata, checklinks
ui.taskgroup.replicate = estaipsize, readodometer, transmitaip, verifyaip,
fetchaip, auditaip, removeaip, restorefromaip, replacewithaip,
restorekeepexisting, restoresinglefromaip, replacesinglewithaip

The AIPs are thought to be easily stored in a remote environment, for maintaining in a
secure place all DSpace contents. By default, for saving objects in a cloud, the Dura-
cloud is the one advised by default. Duracloud is intended for working in accordance with
DSpace, in fact there are a lot of features integrated between these two environments that
can be used for making easier the preservation process.
For configuring the work environment and automating the backup processes, the adminis-
trator has to make some configurations. Editing [dspace-src]/dspace/config/modules/duracloud.cfg
file DSpace instance is connected with Duracloud, passing in this file the data for the con-
nection with the cloud service.

DuraCloud service location (just the hostname)
host = demo.duracloud.org

DuraCloud service port (usually 443 for https)
port = 443
context = durastore

DuraCloud user name
username = myduraclouduser
DuraCloud password
password = passw0rd

The [dspace-src]/dspace/config/modules/replicate.cfg has to be edited. For enabling Du-
racloud as storage place the following settings are recommended:

Replica store implementation class (specify one)
plugin.single.org.dspace.ctask.replicate.ObjectStore = \

org.dspace.ctask.replicate.store.DuraCloudObjectStore

The space where to store AIP contents in Duracloud is named aip-store by default:

The primary storage group / folder where AIPs are stored/retrieved when AIP
based tasks are executed (e.g. "Transmit AIP", "Restore from AIP")
group.aip.name = aip-store

Page 108 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

For the automation of synchronization process between DSpace contents and Duracloud
ones, the administrator user needs to add to [dspace-src]/dspace/config/dspace.cfg some
lines at the end of the list of ”event.consumer.”:

Event System Configuration

ADD the "replicate" consumer to the end of the list of ’default.consumers’
#(This enables the consumer)
event.dispatcher.default.consumers = versioning, search, browse, discovery,
eperson, harvester, replicate

....

Configure consumer to manage METS AIP content replication
event.consumer.replicate.class = org.dspace.ctask.replicate.METSReplicateConsumer
event.consumer.replicate.filters = Community|Collection|Item|Group|EPerson+All

Now in the previously edited replicate.cfg, the default configurations responsible for the
replication tasks process are the following:

ReplicateConsumer settings
ReplicateConsumer must be properly declared/configured in dspace.cfg
All tasks defined will be queued, unless the ’+p’ suffix is appended, when
they will be immediately performed. Exercise considerable caution when using
+p, as lengthy tasks can adversely affect UI or other responsiveness.

Replicate event consumer tasks upon install/add events.
A comma separated list of valid task plugin names (with optional ’+p’ suffix)
By default we transmit a new AIP when a new object is added
consumer.tasks.add = transmitsingleaip

Replicate event consumer tasks upon modification events.
A comma separated list of valid task plugin names (with optional ’+p’ suffix)
By default we transmit an updated AIP when an object is modified
consumer.tasks.mod = transmitsingleaip

Replicate event consumer tasks upon a delete/remove events.
A comma separated list of valid task plugin names (with optional ’+p’ suffix)
By default we write out a deletion catalog & move the deleted object’s AIP
to the "trash" group in storage (where it can be permanently deleted later)
consumer.tasks.del = catalog+p

Replicate event consumer queue name - where all queued tasks are placed
This queue appears under the curate.cfg file’s ’taskqueue.dir’
(default taskqueue location is [dspace]/ctqueues/)
consumer.queue = replication

c© ForgetIT Page 109 (of 126)

ForgetIT Deliverable D8.6

It could be better to check if these settings are coherent with the ones here illustrated.
After that, the automation of the synchronization process is assured.

The last file to edit is [dspace-src]/dspace/config/modules/replicate-mets.cfg, used by
replicate.cfg in case of AIP packager format (for details about other formats 34). The
contents are the following:

Restore Task (hierarchical)
This task runs the recursive ’Default Restore Mode’ (-r -a) option of
the AIP Backup & Restore tool.
restorefromaip.restoreMode = true
restorefromaip.recursiveMode = true
restorefromaip.createMetadataFields = true
restorefromaip.skipIfParentMissing = true

Replace Task (hierarchical)
This task runs the recursive ’Force Replace Mode’ (-r -f -a) option of
the AIP Backup & Restore tool.
replacewithaip.replaceMode = true
replacewithaip.recursiveMode = true
replacewithaip.createMetadataFields = true
replacewithaip.skipIfParentMissing = true

Keep Existing Task (hierarchical)
This task runs the recursive ’Restore, Keep Existing’ (-r -k -a) option of
the AIP Backup & Restore tool.
restorekeepexisting.keepExistingMode = true
restorekeepexisting.recursiveMode = true
restorekeepexisting.createMetadataFields = true
restorekeepexisting.skipIfParentMissing = true

Restore Task (single object)
This task runs the ’Default Restore Mode’ (-r) option of the AIP Backup &
Restore tool.
restoresinglefromaip.restoreMode = true
restoresinglefromaip.recursiveMode = false
restoresinglefromaip.createMetadataFields = true
restoresinglefromaip.skipIfParentMissing = false

Replace Task (single object)
This task runs the ’Force Replace Mode’ (-r -f) option of the AIP Backup &
Restore tool.
replacesinglewithaip.replaceMode = true
replacesinglewithaip.recursiveMode = false
replacesinglewithaip.createMetadataFields = true
replacesinglewithaip.skipIfParentMissing = false

34https://wiki.duraspace.org/display/DSPACE/ReplicationTaskSuite

Page 110 (of 126) www.forgetit-project.eu

https://wiki.duraspace.org/display/DSPACE/ReplicationTaskSuite

Deliverable D8.6 ForgetIT

These are the basic settings for the work environment that I wantend to highlight. The
complete replicate.cfg, replicate-mets.cfg and curate.cfg are available at the following link:
https://github.com/DSpace/dspace-replicate/tree/master/config/modules.

Once that pom.xml has been modified and the other files has been created, it is possible
to apply the changes. Move to [dspace-src]/dspace/ folder and run

mvn clean package

After that, move to [dspace-src]/dspace/target/dspace-[version]-build/ folder and run

ant update

At this point, everything is ready for the backup and restore features.

C.10 Replication Suite

The replication suites can be performed from command line running the ./dspace pack-
ager command from the [dspace]/bin/ install folder. For specific actions the admin has to
add some options. For downloading DSpace content in AIP format the -d command is
added to the packager command. It is possible to download a single object at a time or a
hierarchy of objects, adding -a information.

A single object is downloaded, an Item for example:

[dspace]/bin/dspace packager -d -t AIP -e admin@dspace_account_mail.edu -i
1234/567 item-aip.zip

Where the mail address is the one used by the administrator for DSpace registration,
1234/567 is the Item handle and item-aip.zip is the chosen name for the downloaded AIP.
When the whole hierarchy is required, adding -a, all the children objects will be down-
loaded:

[dspace]/bin/dspace packager -d -a -t AIP -e admin@dspace_account_mail.edu -i
1234/56 collection-aip.zip

It is possible to download the whole site and its dependencies, using the site handle,
1234/0.
When the administrator wants to restore old contents or adds new ones on a DSpace
instance, there are two ways to proceed. The first and easier is the ingestion: an object
is added to an existing environment using the submit option (-s) in the command line and
a new object is created

c© ForgetIT Page 111 (of 126)

https://github.com/DSpace/dspace-replicate/tree/master/config/modules

ForgetIT Deliverable D8.6

[dspace]/bin/dspace packager -s -t AIP -e admin@dspace_account_mail.edu
-p 1234/890 /path/to/the/ingesting/aip.zip

The -p option needs the new parent of the object as parameter and a new handle will be
assigned to the submitted object by default. When a whole hierarchy is submitted, the -a
option is added:

[dspace]/bin/dspace packager -s -a -t AIP -e admin@dspace_account_mail.edu
-p 1234/0 /path/to/the/ingesting/community-aip.zip

This last example illustrates how to add a Community to an existing site. The handle
assigned as parent to the object is the site one.
The other way to insert objects in a DSpace instance is the restore mode. The restore
features attempt to maintain the preceding structure of an object, reducing the reported
changes to a minimum. Some different options are available for managing the restore
process. The basic option is the -r one: it restores an object and its hierarchy, maintaining
the handles and, if preexisting, changing the information contained in the AIP as less as
possible. Adding the -k command, the restore is done and, if an object already exists, the
restore process skips over it (and all children objects), and continue to restore all other
non-existing elements.

[dspace]/bin/dspace packager -r -a -t AIP -e admin@dspace_account_mail.edu
aip1234.zip

It is possible to see that, differently from -s option, this feature doesn’t require the parent
object option -p. If possible, it retrieves it from the metadata contained in the mets.xml
file by DSpace. This feature works fine if the aip1234.zip hierarchy doesn’t exist in the
DSpace instance. If some children objects already exist, an error will be displayed. In this
situation the administrator has to use the more powerful Restore Keep Existing Mode (-r
-k) or the Force Replace Mode (-r -f).

The -r -k options attempt to skip over objects that already exist. This set of options will
report to the user if some objects already exist. It could be useful when a part of a
hierarchy has been lost, so for restoring the missing objects the user can run the following
command:

[dspace]/bin/dspace packager -r -a -k -t AIP -e admin@dspace_account_mail.edu
aip1234.zip

The -r -f options, force restore mode, operate overwriting objects found to already exist,
deleting the old contents and substituting with the new ones. It is useful when the ad-
min wants to restore an object maintaining the links with existing children objects. This

Page 112 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

method could be dangerous because it deletes the old contents for inserting new ones.
For example, when attempting to restore an entire site on a clean DSpace instance it is a
powerful way; In case of problems about dependencies between objects, the force restore
recreates them.

[dspace]/bin/dspace packager -r -a -f -t AIP -e admin@dspace_account_mail.edu
-i 1234/0 -o skipIfParentMissing=true /full/path/to/your/site-aip.zip

In this way, the administrator can obtain the old work environment maintaining all the de-
pendencies. The -o option is for adding other requests to the command line; in this case
the administrator has chosen skipIfParentMissing set to true, in order to ignore the errors
involving the missing parents. When a recursive ingestion is performed, it doesn’t cause
problems. Missing parent objects are then ingested, so that it will automatically restore
the Item mapping that caused the error.

An interesting feature about all the restore modes seen in this section is the maintenance
of previously created groups and ePersons. In fact, when the admin recreates the DSpace
site, the mail that he uses is the one for registering to the old DSpace instance. All
privileges are maintained, so that the environment will be the same that the administrator
wanted to preserve.
These are some useful features of command line packager. For more details, see the
DSpace official guide 35.

The before mentioned commands can be executed from the xml GUI’s section Curation
Tasks, as could be understood from the configuration paragraph.

In Figure 40, it is possible to see that the curation tasks are divided in two groups: general
tasks and replication suite tasks. The latter are the ones involved in backup and restore
functionalities.

These are the available options in the GUI:

• Estimate Storage Space for AIP(s) determines how many space is available for AIPs
in the storage place

• Read Odometer gives some information about DSpace contents (dimension of ex-
isting objects, dimension of uploaded and downloaded contents)

• Transmit AIP(s) to Storage downloads the AIPs in the storage place (local folder or
cloud)

• Verify AIP(s) exist in Storage for detecting if a specified object already exists in the
storage place

35https://wiki.duraspace.org/display/DSDOC5x/AIP+Backup+and+Restore

c© ForgetIT Page 113 (of 126)

https://wiki.duraspace.org/display/DSDOC5x/AIP+Backup+and+Restore

ForgetIT Deliverable D8.6

Figure 39: Curation Tasks divided according to their functionalities

• Fetch AIPs from Storage takes from the storage place the missing children objects
of the specified ones. This corresponds to the submission mode explained in com-
mand line section

• Audit against AIP(s) checks if there are differences between the stored objects and
the ones in DSpace

• Remove AIP(s) from storage eliminates objects from the storage space

• Restore Missing Object(s) from AIPs restore the missing objects in DSpace from the
specified AIP’s handle.

• Replace Existing Object(s) with AIP(s) substitutes the existing DSpace contents with
the stored ones, like with -r -f options.

• Restore Missing Object(s) but Keep Existing Objects checks for the missing objects
in DSpace and restore these ones from the AIPs. This feature corresponds to the -r
-k one.

• Restore Single Object from AIP and Replace Single Object with AIP correspond to
the before mentioned ones, but specific for single objects management.

C.11 Customized Cloud Features: ownCloud

DSpace works fine with Duracloud by default, but what to do in case of a different cloud
service? In this section I try to explain how did I set a different scenario, using ownCloud.

Page 114 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Figure 40: All the replication tasks available in the curation tasks section of the xml inter-
face

ownCloud Installation

First of all the administrator has to install the ownCloud client service. Here is a basic
installation of this service in order to show that it is easy and quick to start storing DSpace
content in ownCloud.

$ sudo apt-get install owncloud-client

Then, it is useful to install its command line tool:

$ sudo apt-get install owncloudcmd

This tool allows to use the ownCloud features from command line.

c© ForgetIT Page 115 (of 126)

ForgetIT Deliverable D8.6

ownCloud Configuration

For starting to store AIPs in ownCloud, the user has to synchronize the local folder with
the remote storage place provided by ownCloud. It is possible to do it creating an hidden
folder that we could call .owncloud and to create inside it a configuration file, owncloud.cfg,
with the following contents:

[General]

[ownCloud]
url=http://owncloud-site/owncloud/remote.php/webdav/
http_user=
authType=http
user=name_registered_in_owncloud

In this way the access to ownCloud is granted.

The user can load contents in ownCloud manually, passing in command line the following
lines:

$ owncloudcmd --confdir /path/to/configuration/file/owncloud.cfg
/path/to/AIP/folder/ owncloud://"username":"password"@"owncloud-site-
address/owncloud"

The argument passed to –confdir option is the location of the configuration file just edited;
the second folder pointed is the one containing the AIPs that we want to synchronize with
ownCloud.
The user has to perform two steps manually: download the AIPs from DSpace and store
them in the cloud. It could be a little frustrating if this process has to be replicated once
every hour of the day! It is possible to automate these processes making two cron jobs.
In a Linux machine it is possible to write a cron table in this way:

$ crontab -e

The following content has to be written in the cron table:

0 */1 * * * /bin/dspace packager -u -d -a -t AIP -e admin@dspace_account_mail.edu
-i 1234/0 /path/to/AIP/folder/sitewide-aip.zip

0 */1 * * * owncloudcmd --confdir /path/to/configuration/file/owncloud.cfg

Page 116 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

/path/to/AIP/folder/ owncloud://"username":"password"@"owncloud-site-
address/owncloud"

The 0 */1 * * * indicates that the jobs are run once every hour of the day.

c© ForgetIT Page 117 (of 126)

ForgetIT Deliverable D8.6

D Implementation of Reference Model Workflows

In this Appendix we describe the implementation of the two workflows defined in the PoF
Reference Model which have been implemented in the third prototype, as discussed in
Section 3: Preservation Preparation and Re-activation. For each workflow we present a
sequence of steps, with the help of some application screenshots.

D.1 Preservation Preparation Workflow

The Preservation Preparation workflow includes several tasks from the selection of the
content to be preserved up to the transfer of such content to the archive. The steps of
the workflow in relationship with the framework components are depicted in Figure 4 in
Section 3.

In the following we describe the implementation of each step in the current prototype.
The select step is the first task in the workflow, which could be triggered by the Forget-
tor (e.g based on PV calculation or on other evidences provided by the Active System)
or by the Context-aware Preservation Manager (taking into account specific preservation
rules). These two components are still under development (see Section 5) and are not
fully integrated in the middleware, so this process is not fully automated. For demonstra-
tion purposes, the user triggers the preservation sending a request to the PoF Middleware
(the calculated PV can be used to guide the selection of the content to preserve). All the
other steps in the workflow have been fully implemented.

A simplified representation of the Preservation Preparation workflow is shown in Fig-
ure 41, where the details about the involved components and flow branches in case of
errors or exceptions have been omitted for the sake of clarity. The internal details of the
routing engine behaviour have been omitted as well: the messaging system and the rout-
ing engine logic have been simplified using iterative or parallel expansion regions. It is
worth noting that the set of steps below refer more specifically to the image selection sce-
nario (for example the Extractor related step is referring to image analysis), so additional
or modified steps have been implemented for the other scenarios.

1. A preservation request is triggered by the Active System (see Figure 42): the CMIS
ID of the selected resource is sent to the middleware REST endpoint (see Table 6).
The CMIS resource can be a collection or a single item. The PV for the whole
collection or for the single item is also sent to the middleware. This task corresponds
to the select step in the workflow.

2. The next step in the workflow, provide, is implemented by different components. The
request sent to the middleware REST server is processed by the Scheduler, which
instantiates a new Task (with TaskType equal to PRESERVATION). The Task is
stored in the object DB used by the ID Manager and Metadata Repository. The Task
ID is returned to the user, this ID can be used to monitor the progress of the request

Page 118 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Figure 41: UML activity diagram for the Preservation Preparation workflow.

and to get the results when completed.

3. The Scheduler prepares a new message wrapping the received information about
the resource and sends it to the SCHEDULER.QUEUE. The message header con-
tains the information about the Task type. The flow control is now managed by
the routing engine, which takes care of dispatching the message to the appropriate
components.

4. The CMIS ID provided by the Active System (and stored in the message body) is
used to fetch information about the content to be preserved: based on CMIS object
attributes, the Collector checks whether the content to be preserved is a single
resource or a collection (e.g. a pimo:LifeSituation).

5. If the content is a single resource, a single message is sent to PRESERVATION.QUEUE.
If the content is associated to a collection, the Collector retrieves the information
about each resource in the collection (using the CMIS relationship attribute) and for
each resource the CMIS ID and the corresponding PV are retrieved.

c© ForgetIT Page 119 (of 126)

ForgetIT Deliverable D8.6

Figure 42: User interface of PIMO: manual selection of resource to be preserved.

6. The following preservation decision depends on the availability of a Preservation
Broker Contract where the respective policies are defined.
In case no contract is available (e.g., for prototypes in early stages of integration into
the PoF) we choose a threshold equal to 0.8: only resources in the collection with a
high PV are considered eligible for preservation. The PV threshold is configured in
the Forgettor code deployed in the middleware.
In case a contract defines the PV categories (gold, silver, bronze, wood, ash)
to be preserved (possibly including the Preservation Levels (e.g., premium, stan-
dard, basic, none, as done in the Personal Preservation Pilot in D9.4 [Maus et al., 2015])),
those resources are fetched where the Preservation Level is not none. (Depending
on the policies for the other levels, also a distinction in time periods of fetching or
updating of resources could be possible, such as premium every time changes are
there, and basic only every other year).

7. For each selected resource a separate message is sent to the PRESERVATION.QUEUE.
It is worth noticing that also the collection itself is preserved: the package represent-
ing the collection has no resources inside, but just a list of resources in the collection
and some global descriptions referring to the whole collection.

8. Note: in the following we describe the other steps in the workflow from the point
of view of a single resource; when dealing with collection each step is executed in
parallel for all resources in the collection and for the collection object itself. Currently
each resource is stored in the Preservation System as a separate package and the
collection package is used to preserve information about the aggregation (e.g. the

Page 120 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

collection represents a photo collection for a business trip). The only step which
is referring to the whole collection is associated to the Condensator, because the
clustering algorithm is executed on the set of images in the collection.

9. The messages sent to the PRESERVATION.QUEUE are consumed under the con-
trol of the routing engine. The next step is the ID generation: the ID Manager gets
the information about the CMIS ID parsing the message body, generates a new
unique ID (pofId) and stores the mapping between the two in its internal object
DB. From this step onward, all the other tasks use the pofId taken from the body
of the received messages. This task completes the provide step in the workflow.

10. After each resource is assigned a new unique ID, the Collector can fetch the files
from the Active System CMIS repository and store them in the middleware: for each
resource a folder named according to the unique ID is created. This folder is the
temporary folder for package preparation and is used during the next steps: a sub-
folder for the content and one for the metadata is created. The Collector fetches
all descriptive metadata associated to each CMIS object and stores such metadata
in its internal DB. Due to the asynchronous nature of the messaging layer, multiple
resources can be retrieved in parallel and the results are stored in the corresponding
folder with the unique name. This task completes the provide step in the workflow.

11. The enrich step in the workflow is also associated to different components. After the
retrieval process for a given resource has been completed, the Collector returns a
message to the routing engine containing information about the package folder for
that resource. The routing engine sends this information to the next component in
the flow, the Extractor.

12. The request sent to the Extractor contains information about content types for each
package. In the current implementation the Extractor executes image analysis for all
the images in the package, if any, otherwise it is skipped. The Extractor component
running in the middleware prepares a public URL for the images and sends this
information to the remote image analysis service running at CERTH. The image
analysis type is an additional parameter which can be configured in the workflow (in
the provided routing engine sample configuration all implemented image analysis
methods are executed).

13. The next step involves the Contextualizer, which processes messages for text re-
sources. The contextualization result is added to the temporary package folder, as
part of the metadata. A context referring to the whole collection could be stored in
the collection package.

14. An optional step is defined in the workflow, for collections of images: a clustering
algorithm (provided by the Condensator) can be executed. Currently if the num-
ber of selected images from the original collection is equal or greater than 10, the
Condensator is executed and the results are stored within the collection package,
since they are related to the whole collection and not to each resource separately.
The intermediate products (metadata files, temporary results, etc) are stored in the

c© ForgetIT Page 121 (of 126)

ForgetIT Deliverable D8.6

middleware internal object DB or on the file system. This task completes the enrich
step in the workflow.

15. The last two steps in the workflow, package and transfer, are assigned to a sin-
gle component, the Archiver. After all processing steps have been completed, the
Archiver receives a request message to prepare the package and submit it to the
Preservation System. The package is sent to the archive using its REST APIs. An
example of archived content in DSpace is shown in Figure 43: the resources and
the associated metadata are shown.

Figure 43: Preview of archived resource in DSpace.

16. The package submission is made up of two steps: first the package is imported into
DSpace and then it is copied in the cloud storage. Two additional IDs are assigned
to the package: a repositoryId (from DSpace) and a storageId (from cloud
storage). Both are added to the ID mapping for that resource and stored in the
object DB by the ID Manager (see Figure 44).

17. Different Storlets are executed in the Preservation-aware Storage System upon con-
tent ingest: for example a Metadata Enrichment Storlet is executed on text content
(the extracted metadata are indexed and are used by the metadata search function-
ality exposed by the cloud storage).

18. The steps above are executed for each resource. The status of the resource is up-
dated: resource is shown as preserved in the Active System. In case of collections,
the tasks above are executed for each resource in parallel and the preservation sta-
tus is updated only when the resources in collection and the collection object itself

Page 122 (of 126) www.forgetit-project.eu

Deliverable D8.6 ForgetIT

Figure 44: Web interface of the PoF Middleware, the different IDs associated to the same
content are shown, as well as the preservation status and the associated PV.

have been correctly transferred to the Preservation System. This task completes
the transfer step in the workflow.

D.2 Re-activation Workflow

After the content has been successfully preserved, a request to restore one or more
resources can be triggered, as described below. This is associated to the Re-activation
workflow defined in the model. Currently almost all the steps have been implemented:
the only task which is still under development is the re-contextualization. Compared to
the first release, the re-activated content is now retrieved from the cloud storage, where it
has been actively preserved and possibly transformed.

1. The first step in the workflow is the request: the Active System can send a re-
quest to the PoF Middleware using the REST APIs, in order to restore or update the
preserved content locally.

2. Similarly to the Preservation Preparation workflow, the request sent to the middle-
ware REST server is is processed by the Scheduler, which instantiates a new Task
(with TaskType equal to REACTIVATION). The Task is stored in the object DB used
by the ID Manager and Metadata Repository. The Task ID is returned to the user,
this ID can be used to monitor the progress of the request and to get the results
when completed.

3. The Scheduler prepares a new message wrapping the received information about

c© ForgetIT Page 123 (of 126)

ForgetIT Deliverable D8.6

the resource and sends it to the SCHEDULER.QUEUE. The message header con-
tains the information about the Task type. The flow control is now managed by
the routing engine, which takes care of dispatching the message to the appropriate
components. Additional information about the preserved content could be retrieved
by the Collector. This task completes the request step in the workflow.

4. The next step in the workflow is the search: the ID Manager receives a message
whose body contains the CMIS ID of the preserved content to be reactivated (single
resource or collection). Using the ID mappings stored in the ID Manager object DB,
the repository and storage ID are retrieved. The Navigator can provide additional
search features, but currently it is not used because the content ID is provided. After
correct identification of the content, the search step completes.

5. During the retrieve step, the Archiver receives a message with the content in-
formation and retrieves it from the Preservation System sending a request to the
archive REST service. Compared to the original resource, the content is returned
as a package (including both resources and metadata, including the context). This
task is associated to the prepare step in the workflow. In case of collections, the
resources are retrieved separately and several packages are returned to the user.
This is under development, to combine multiple archived packages in a single dis-
semination package. This task completes the package step in the workflow (the
re-contextualization is still under development).

6. The last step in the workflow is the deliver: the content is published by the Col-
lector on the CMIS repository implemented in the middleware and can be accessed
by the Active System using the CMIS ID on the middleware repository. In order to
get this CMIS ID, the Active System can use two different mechanisms: using the
task monitoring mechanism, the task ID provided by the middleware at the begin-
ning of the workflow can be used to monitor the status of the re-activation process
and when the task is completed the CMIS ID is available in the task results (which
can be retrieved using the middleware REST API); alternatively, the Active System
can register with the messaging system and obtain a dedicated queue where such
notifications are published: a message consumer running in the Active System can
retrieve a message containing the CMIS ID. The task monitoring is currently used by
TYPO3 CMS, while for the Semantic Desktop the message queue is the preferred
mechanism.

7. The Active System can retrieve the content from the middleware CMIS repository
and the re-activation workflow is then completed.36

36A video showing preserve and restore can be seen in the Personal Preservation Pilot I at https:
//pimo.opendfki.de/wp9-pilot/preservation_sd.html

Page 124 (of 126) www.forgetit-project.eu

https://pimo.opendfki.de/wp9-pilot/preservation_sd.html
https://pimo.opendfki.de/wp9-pilot/preservation_sd.html

Deliverable D8.6 ForgetIT

E Experimental APIs of the Memory Buoyancy Assessor

In the following we describe the main APIs and I/O formats for the MB Assessor compo-
nent, which is part of the Forgettor (Section 5.7). All the services reported below have
been deployed on a test RESTful server running at LUH premises, hosting the Forgettor
Server37. Sample code for the MB Assessor client, written in Java, is reported in Listing 5.

Querying MB Values of PIMO resources

This service allows the client to query the estimated MB values, and get a numerical
value from 0 to 1 in plain-text as a result (or NaN if the values are not yet estimated, or
the resource is not registered in the system).

1. REST service type: GET.

2. URI Input: http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?
u=<userID>&r=<resourceID>&t=<timestampinUNIXepochs>.

3. URI output: (plain-text) MB score in [0,1] or NaN.

4. Query example: http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/
query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130.

Register PIMO resources

In order to compute the MB scores using the background sub-component, the resources
must be registered; this service allows the client to send the list of resource IDs to register
for the computation.

1. REST service type: POST.

2. URI Input: http://forgetit.l3s.uni-hannover.de:8092/pimo/res/register.

3. URI output: a JSON response object that containing

• the response status code:
– CREATED: the resources have been successfully registered.
– NOT MODIFIED: the resources are already registered, or the attempt makes

no changes in the system.
– INTERNAL SERVER ERROR: server failed to register, internal error.
– PARTIAL CONTENT (for bulk registration): only a sub set of resources are

registered.

• the list of IDs for successfully registered resources.

37Forgettor Server - http://forgetit.l3s.uni-hannover.de:8092/application.wadl

c© ForgetIT Page 125 (of 126)

http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=<user ID>&r=<resource ID>&t=<timestamp in UNIX epochs>
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=<user ID>&r=<resource ID>&t=<timestamp in UNIX epochs>
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130
http://forgetit.l3s.uni-hannover.de:8092/pimo/res/register
http://forgetit.l3s.uni-hannover.de:8092/application.wadl

ForgetIT Deliverable D8.6

Listing 5: Sample code for MB Assessor client.
import javax . ws . rs . c l i e n t . AsyncInvoker ;
import javax . ws . rs . c l i e n t . C l i e n t ;
import javax . ws . rs . c l i e n t . C l i e n t B u i l d e r ;
import javax . ws . rs . c l i e n t . E n t i t y ;
import javax . ws . rs . c l i e n t . Invoca t ionCa l lback ;
import javax . ws . rs . c l i e n t . WebTarget ;
import javax . ws . rs . core . MediaType ;
import org . g l a s s f i s h . j e r sey . c l i e n t . C l i en tCon f i g ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBRequest ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBVEntity ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBVList ;
. . .

/ / Def ine the en t ry po in t o f the web serv i ce domain
Cl ien tCon f i g c l i e n t C o n f i g = new Cl ien tCon f i g () ;
c l i e n t = C l i e n t B u i l d e r . newCl ient (c l i e n t C o n f i g) ;
WebTarget t a r g e t = c l i e n t . t a r g e t (” h t t p : / / f o r g e t i t . l 3s . uni−hannover . de:8092 ”) ;
. . .

/ / Def ine an asynchronous REST request
f i n a l AsyncInvoker asyncInvoker = t a r g e t . path (” / pimo /mb/ bulk−query ”) .
request (MediaType . APPLICATION JSON) . async () ;

/ / Def ine a request ob jec t which conta ins c o l l e c t i o n ID (account) , epoch value o f demanded
/ / c a l c u l a t i o n timestamp , and a l i s t o f resource IDs

MBRequest req = new MBRequest () ;
req . setAccount (” pimo:1327593979868:1 ”) ;
req . setTime (1386686731);

L i s t<St r ing> res = new Ar rayL i s t <>(4);
res . add (” pimo:1381327141334:56 ”) ; / / the CMIS ID used i n the PoF Middleware
res . add (” pimo:1374842706949:3 ”) ;
res . add (” pimo:1385386608202:18 ”) ;
res . add (” pimo:1381327141334:55 ”) ;
res . add (” pimo:1365627012409:41 ”) ;

req . setResources (res) ;

/ / Send the asynchronous request to the serv i ce
En t i t y<MBRequest> r e q E n t i t y = E n t i t y . e n t i t y (req , MediaType . APPLICATION JSON) ;

MBVList futureResp = nul l ;

t ry {
futureResp = asyncInvoker . post (reqEn t i t y , new
Invocat ionCa l lback<MBVList>() {

@Override
public void completed (MBVList response) {

System . out . p r i n t l n (” Response e n t i t y ’ ” + response + ” ’ rece ived . ”) ;
for (MBVEntity mbve : response . getValues ()) {

System . out . p r i n t l n (mbve . toCompi ledStr ing ()) ;
}

}

@Override
public void f a i l e d (Throwable throwable) {

System . out . p r i n t l n (” I nvoca t i on f a i l e d . ”) ;
throwable . p r in tS tackTrace () ;

}

}) . get () ;

} catch (I n te r rup tedExcep t i on | Execut ionExcept ion e) {
e . p r in tS tackTrace () ;

}

Page 126 (of 126) www.forgetit-project.eu

	Executive Summary
	Introduction
	PoF Framework Architecture
	PoF Reference Model
	Implementation of the Reference Model

	PoF Middleware
	PoF Enterprise Service Bus
	Message-Oriented Middleware
	Enterprise Integration Patterns
	Asynchronous Routing Engine
	PoF ESB Implementation

	Middleware Configuration
	RESTful Service
	CMIS Integration

	PoF Middleware Integrated Components
	ID Manager
	Metadata Repository
	Scheduler
	Extractor
	Condensator
	Collector/Archiver
	Forgettor
	Contextualizer
	Navigator
	Context-aware Preservation Manager

	Active Systems
	Semantic Desktop
	TYPO3
	CMIS-based User Applications

	Preservation System
	Digital Repository
	Preservation-aware Storage System

	Third Prototype Implementation
	Conclusion
	Assessment of Performance Indicators
	Evaluation of the PoF Framework

	Lessons Learned
	Vision for the Future

	References
	Glossary
	Middleware Configuration and Administration
	Preserve-or-Forget RESTful Service
	DSpace Installation and Configuration
	Introduction
	Installation Procedure
	DSpace REST API
	Administration and Users Permissions
	Import and Export
	Versioning and Other Features
	AntiVirus in DSpace: ClamAV
	Curation Tasks
	Cloud Storage
	Replication Suite
	Customized Cloud Features: ownCloud

	Implementation of Reference Model Workflows
	Preservation Preparation Workflow
	Re-activation Workflow

	Experimental APIs of the Memory Buoyancy Assessor

