
www.forgetit-project.eu

ForgetIT
Concise Preservation by Combining Managed Forgetting

and Contextualized Remembering

Grant Agreement No. 600826

Deliverable D8.3

Work-package WP8: The Preserve-or-Forget Reference
Model and Framework

Deliverable D8.3: The Preserve-or-Forget Framework –
First Release

Deliverable Leader Francesco Gallo (EURIX)
Quality Assessor Alexander Damhuis (dkd)
Estimation of PM spent 20
Dissemination level PU
Delivery date in Annex I M18 (July 2014)
Actual delivery date 29 August 2014
Revisions 8
Status Final Draft
Keywords PoF Framework, first prototype, integrated

components

ForgetIT Deliverable 8.3

Disclaimer

This document contains material, which is under copyright of individual or several ForgetIT
consortium parties, and no copying or distributing, in any form or by any means, is allowed
without the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consor-
tium warrant that the information contained in this document is suitable for use, nor that
the use of the information is free from risk, and accepts no liability for loss or damage
suffered by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for
any use that may be made of the information contained herein.

c© 2014 Participants in the ForgetIT Project

Page 2 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

Revision History

Version Major changes Authors
v0.8 Implemented QA comments. Added section

about evaluation of deliverable using WP8 suc-
cess/progress indicators. Final reading.

L3S, dkd, EURIX

v0.7 Added description of Collector, Archiver, ID Man-
ager and Scheduler. Added class diagrams.

EURIX

v0.6 Added description of Enterprise Integration Pat-
terns and message routing, data and workflow
management, OAIS concepts.

EURIX

v0.5 Added description for Digital Repository and
Cloud Storage, first prototype implementation,
software development, deployment and testing.

IBM, EURIX

v0.4 Described PIMO, TYPO3 and Contextualizer. DFKI, dkd, USFD
v0.3 Described PoF Middleware, Extractor and For-

gettor.
L3S, CERTH, EURIX

v0.2 Completed Executive Summary, overview of ar-
chitecture, Message Oriented Middleware con-
cepts and technologies.

EURIX

v0.1 Created ToC and defined main Sections. As-
signed contributions.

EURIX

List of Authors

Partner Acronym Authors

LUH Claudia Niederee, Nattiya Kanhabua
IBM Doron Chen
DFKI Heiko Maus
CERTH Vasilis Solachidis
dkd Alexander Damhuis
USFD Mark A. Greenwood
EURIX Francesco Gallo, Jacopo Pellegrino

c© ForgetIT Page 3 (of 61)

ForgetIT Deliverable 8.3

Table of Contents

Table of Contents 4

Executive Summary 6

1 Introduction 7

2 Assessment of WP8 indicators 9

3 Preserve-or-Forget Framework 11

4 PoF Middleware Implementation 13

4.1 Message Oriented Middleware . 13

4.2 Technologies for PoF Middleware . 15

4.3 PoF Middleware APIs . 15

5 PoF Middleware Integrated Components 22

5.1 ID Manager . 22

5.2 Scheduler . 23

5.3 Forgettor . 24

5.4 Extractor . 27

5.5 Contextualizer . 28

5.6 Collector/Archiver . 29

6 Active Systems 31

6.1 Semantic Desktop . 31

6.2 TYPO3 . 32

7 Preservation System 33

7.1 Digital Repository: DSpace . 33

7.2 Cloud Storage: PDS and Storlet Engine . 35

Page 4 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

8 First Prototype Implementation 37

8.1 Software Development, Deployment and Testing 37

8.2 Source Code Documentation, Availability and License 40

9 Summary and Future Work 41

Glossary 42

References 43

A Demo of the first prototype 45

B DSpace Installation Guide 52

B.1 Introduction . 52

B.2 Installation procedure . 52

C Message Oriented Middleware 59

C.1 Apache ActiveMQ . 59

C.2 Apache Camel . 61

c© ForgetIT Page 5 (of 61)

ForgetIT Deliverable 8.3

Executive summary

The present deliverable consists of two parts: (1) the implementation of the first release
of the Preserve-or-Forget (PoF) Framework and (2) the description of this framework.

The first release of the Preserve-or-Forget (PoF) Framework is based on the architecture
and integration plan defined in D8.1 [ForgetIT 2013d], integrates the components devel-
oped in the technical WPs and provides a foundation for application pilot development in
WP9 and WP10.

The implemented APIs, used to integrate the different architecture components, were de-
fined in D8.1. We leverage the CMIS specification to retrieve content from Active Systems,
while the PoF Middleware exposes REST APIs which are used to trigger the preservation
workflows and other processes in the PoF Framework.

The PoF Middleware has been implemented as a Message Oriented Middleware (MOM).
We provide a short discussion about the chosen approach and some basic information
about technologies used to implement the messaging system and the middleware bus.

For the components identified in D8.1, either providing common tasks or implementing
core ForgetIT functionality, the mechanism for their integration is provided. For each
component we describe the status, the main APIs, the input and output formats and the
integration details, while we refer to either D8.1 or to the relevant deliverables in the
corresponding WP to describe the purpose and the functionalities of each component.

We then briefly discuss the workflow management in the middleware, describing the ex-
change of messages among components and the main end-to-end reference scenario for
synergetic preservation and managed forgetting which has been implemented in the first
prototype release. Further improvements to the workflow management are also outlined,
for example those related to the use of Enterprise Integration Patterns (EIP) or to the
integration of additional ESB components on top of the existing solution.

Concerning the Preservation System, we describe the two main components, the Digital
Repository and the Cloud Storage System. Both systems implement an OAIS compliant
solution for the preservation of ForgetIT content. The APIs exposed by the Preservation
System are discussed and the implementation using DSpace and PDS is described. For
the Digital Repository and the Cloud Storage we describe how they implement the OAIS
functional entities and the internal data models used by both systems. Finally we describe
how Storlets are involved in the current workflow. We also describe how the information
packages are created and provide some examples.

Finally we provide additional information about the software development process and
the collaborative tools, as well as preliminary considerations about the license of the
overall PoF Framework. The software documentation for the PoF Middleware and the
Preservation System APIs are available on the project web site.

Page 6 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

1 Introduction

The main topic of this document is the description of the first prototype implementation of
the PoF Framework. This prototype is the result of the activities performed during the first
year within Task 8.3 - Development of the PoF Framework.

The first PoF Framework prototype provides an integration framework for all available
components, is based on the ForgetIT architecture and is used to validate basic work-
flows for managed forgetting and synergetic preservation. This deliverable consists of the
description of the prototype in this document as well as of the prototype itself, which is
running on the servers at EURIX.

According to the project proposal, the prototype implementation is based on open and
widely adopted technologies, using an integration approach which guarantees flexibility
and loose coupling among all the components.

The development has been performed in a collaborative way, sharing a code repository
and tracking open issues, discussed in periodic meetings by all interested partners.

The architecture of the PoF Framework is described elsewhere (see deliverable D8.1 [For-
getIT 2013d]), in this document we just summarize the relevant information for the sake
of clarity. The components, the interfaces and protocols used to design the overall frame-
work have been identified during the first year. With respect to the original project plan,
the assessment of candidate technologies for the PoF Middleware and the Digital Repos-
itory was anticipated to the first year, in order to provide as early as possible a complete
end-to-end solution with all architecture layers integrated together. During the second
and third year of the project, missing components will be integrated and the available
ones will be improved. The evaluation of the framework performances based on a set of
benchmark scenarios will also be part of the future development activities.

The PoF Framework will also be compliant to the PoF Reference Model, which is still in
preparation at the time of writing. The aim of this model is to go beyond the constraints
of OAIS [CCSDS 2012], which is commonly adopted as the reference specification for
archival systems in digital preservation field but is lacking appropriate definition of the
core ForgetIT principles (synergetic preservation, managed forgetting and contextualized
remembering). A discussion of the OAIS role in the ForgetIT architecture is provided in
deliverable D8.1 [ForgetIT 2013d], while the PoF Reference Model is described in deliv-
erables D8.2 [ForgetIT 2014f] and D8.5 [ForgetIT 2015b].

The implementation of the first prototype leverages the analysis of workflow models for
synergetic preservation, reported in deliverable D5.2 [ForgetIT 2014c]. The definition
of information packages created in the PoF Middleware and imported in the Preserva-
tion System is based on the results provided by WP5. Several components provided
by technical WPs and integrated in the prototype have already been described in de-
tail in corresponding deliverables, namely D3.2 [ForgetIT 2014a], D4.2 [ForgetIT 2014b],
D5.2 [ForgetIT 2014c] and D6.2 [ForgetIT 2014d] for the PoF Middleware components,
D7.1 [ForgetIT 2013c] and D7.2 [ForgetIT 2014e] for the Cloud Storage, D8.1 [ForgetIT

c© ForgetIT Page 7 (of 61)

ForgetIT Deliverable 8.3

2013d] for the Digital Repository and finally D9.2 [ForgetIT 2014g] and D10.1 [ForgetIT
2013a] for the Active Systems.

In the following Sections, the component description will focus on those aspects which are
relevant for integration, such as APIs and I/O formats and protocols, while for component
implementation details please refer to the relevant deliverables mentioned above.

The document is organized as in the following: we start with an assessment of the re-
sults with respect to the success indicators, which have been defined in the ForgetIT De-
scription of Work (Section 2); a summary of the relevant information concerning the PoF
Framework architecture is reported in Section 3, while the relevant architecture blocks
are described in Section 4 and 5 (PoF Middleware), Section 6 (Active Systems) and Sec-
tion 7 (Preservation System); the prototype implementation, including software develop-
ment, documentation and license, is reported in Section 8; in Section 9 we describe the
future activities towards the second framework release; finally we added an appendix to
describe a simple demo with application screenshots and two appendices with installation
and configuration instructions concerning DSpace (used to implement the Digital Repos-
itory) and Apache ActiveMQ (used for the messaging system in the PoF Middleware).

Target audience for this deliverable

This deliverable targets a technically oriented readership, which is interested in the tech-
nical aspects of the implementation of the PoF Framework, plans to adopt the framework
or wants to use it as a blueprint for a similar project.

Page 8 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

2 Assessment of WP8 indicators

The expected WP8 outcomes, reported in the project proposal, are:

• the Preserve-or-Forget (PoF) Reference Model

• the PoF Framework

The results described here for the first framework prototype refer to outcome 2, for which
the following success/progress indicators have been identified in the project proposal:

1. availability of interfaces and protocols exposed/published by software components
to be integrated and delivered by technical work packages,

2. adequateness and effectiveness of the defined integration approach and strategy
for the occurring integration tasks,

3. availability of infrastructure facilities for managing the development of the software
framework (e.g. versioning system, software repository).

The first prototype implementation has been shown at the first annual review. We con-
sider the results presented here in agreement with all indicators above and the objectives
associated to all indicators as adequately satisfied, as described below.

Indicator 1: APIs and protocols

The APIs and protocols of the components to be integrated have been defined, the first
prototype integrates the components according to the integration plan in D8.1. The APIs
published by the PoF Middleware and the Preservation System (Digital Repository and
Cloud Storage Service) are based on REST architectural style, hence different HTTP
verbs are used to get and send data. The REST APIs, described in the software docu-
mentation, have been implemented using Java reference software (Jersey), for maximum
compatibility with all external systems. Concerning the protocols, CMIS is used to re-
trieve resources and metadata from Active Systems. CMIS is a open standard protocol
aimed to support interoperability and is widely adopted and supported. Standard formats
have been used for content packaging (XML-based formats such as METS, Dublin Core,
PREMIS) and for communication with web services (XML or JSON).

Indicator 2: integration approach

The integration approach leverages the best practices in Enterprise Application Integra-
tion (EAI), adopting well established concepts such as the Enterprise Service Bus (ESB)
for the communication layer and Enterprise Integration Patterns (EIP) as industry level
standard for complex integration patterns. Benefits of such approach are discussed in
the document. Concerning the actual implementation, a message oriented approach has

c© ForgetIT Page 9 (of 61)

ForgetIT Deliverable 8.3

been chosen for the integration framework. The PoF Middleware is implemented as a
Message Oriented Middleware (MOM). The adopted approach has been already vali-
dated integrating heterogeneous components delivered as binary executables, libraries
or external services, to implement the priority workflows described in D8.1. The current
prototype includes examples for each category of integrated components.

Indicator 3: development and test infrastructure

The testbed environment has been setup and is accessible to all partners. We made
extensive use of virtualization for testing components developed by each partner. The
software developed is managed using a versioning system (Subversion), available on the
project workspace and accessible to all partners. An issue tracking system (Trac) is used
to keep track of all open issues and for ticketing, as well as to define milestones for the
development (software releases, deadlines, etc.) and to share information about excep-
tions and errors. Each ticket is assigned to the appropriate partner. Progress for each
milestone and deadline can be monitored, taking into account open tickets. The approach
adopted for software development is based on Agile methodology, using UML for sharing
ideas and to describe software components, from preliminary sketches to complex mod-
ules. Only a minimal amount of documents is created during the development phase,
leveraging the software repository and the issue tracking system. SCRUM is used as
favorite approach, with periodic conference calls among all partners involved in the inte-
gration and to plan the next steps, inspired by Sprint Planning meetings. The tracking
system provides the Dashboard, while dedicated sessions during plenary project meeting
have been used to define component requirements and functionalities (Product Backlog).

Page 10 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

3 Preserve-or-Forget Framework

In this Section we quickly remind the main features of the PoF Framework architecture,
already discussed in deliverable D8.1 [ForgetIT 2013d]. The UML component diagram of
the overall architecture is depicted in Figure 1, where the three layers are shown: Active
Systems, PoF Middleware and Preservation System.

Concerning the active components, the Semantic Desktop component is related to the
personal preservation and contains the PIMO. It provides a user interface for both desktop
and mobile users. The TYPO3 CMS is related to the organizational preservation. It
provides a desktop user interface too and contains the CMIS repository within the adapter.
Both the Active Systems have an adapter in order to interact with the middleware REST
APIs. Contents from the Active Systems are retrieved through CMIS interface. Additional
information about the Active Systems can be found in Section 6.

The active components exchange information with the PoF Middleware. The middleware
component enables the decoupling between the Active Systems and the Preservation
System. Part of the components within the PoF Middleware, such as the the Scheduler
or the ID Manager, are related to workflows and data management. Other components
extract from data those features necessary for SIP creation. They are, for instance, the
Navigator, the Extractor, the Forgettor and the Collector/Archiver. In particular, the Collec-
tor/Archiver interacts with the Preservation System through the REST interfaces enabling
both SIP ingest and access of AIPs stored in the Digital Repository. Further information
about both the concepts of MOM and the PoF Middleware is available in Section 4.

The ingest and access processes are managed, on the Preservation System side, by the
Package Importer and Exporter components. The functionalities of the Digital Reposi-
tory are provided by the Repository Manager (with an internal Data Manager) and by the
Preservation Manager. Storage functionalities are provided by the Cloud Storage Service
which includes the Preservation DataStores (PDS), made up of the Preservation Engine
and the OpenStack Swift component, which contains the Storlet Engine. The Preserva-
tion System is described in Section 7.

For the implementation of the first framework prototype, the integration of the components
followed the integration plan reported in deliverable D8.1 [ForgetIT 2013d], the list of
components included in the first release is shown in Table 15 of D8.1.

Two priority workflows have been implemented, for basic synergetic preservation and for
managed forgetting support, according to the diagrams reported in Figure 5 and Figure
6 of deliverable D8.1. Those two priority workflows involve all layers in the architecture,
from preservation requests for content generated in the user application to permanent
storage in the Preservation System, passing through a number of steps in each workflow
where different PoF Middleware components are activated for e.g. extracting features or
generating the context.

c© ForgetIT Page 11 (of 61)

ForgetIT Deliverable 8.3

Figure
1:

PoF
Fram

ew
ork

C
om

ponentD
iagram

Page 12 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

4 PoF Middleware Implementation

In the following, the message oriented approach, which is used for implementing the PoF
Middleware, will be discussed.

4.1 Message Oriented Middleware

The concept of MOM has already been introduced in deliverable D5.2 [ForgetIT 2014c]
and suggested as possible approach in deliverable D8.1 [ForgetIT 2013d]. One of the
main advantages provided by MOM is the loose coupling among integrated components.

A MOM lies between the applications acting as a message mediator between them [Sny-
der u. a. 2011] by means of a communication channel that carries self-contained units of
information which are the messages [Chappell 2004]. It is possible to say that the MOM
mediates events and messages amongst distributed systems providing the required de-
gree of decoupling. Figure 2 provides a view of this kind of architecture.

According to [Snyder u. a. 2011], a MOM could be best described as a category of
software for communication in an loosely-coupled, reliable, scalable and secure man-
ner amongst distributed applications or systems. In an enterprise environment, several
applications may interact and exchange data. In case the information exchange takes
place directly among the distributed applications a connection between them exists which
may not be desirable: in such a scenario the failure of one application could cause the
failure of all the others. This connection is usually referred as coupling and indicates the
interdependence of two or more applications or systems [Snyder u. a. 2011].

Figure 2: Message based communication [Chappell 2004].

Figure 2 also shows how senders know nothing about receivers and receivers know noth-
ing about senders. This is commonly known as asynchronous messaging [Chappell 2004,
Snyder u. a. 2011].

c© ForgetIT Page 13 (of 61)

ForgetIT Deliverable 8.3

A Producer is allowed to send a message that will be delivered either to one or many
Consumers. In the former case the message is sent through a specific queue and the
messaging model is named Point-to-Point, in the latter the message is published on a
topic and the model is named Publish-and-Subscribe [Chappell 2004]. Figure 3 depicts
the two messaging models.

Figure 3: Point-to-Point and Publish-and-Subscribe models [Chappell 2004].

The MOM also has the responsibility to ensure that the messages reach their intended
destination and that they are not lost in case of network failure [Chappell 2004, Sny-
der u. a. 2011], therefore the messages have to be stored into a persistent memory and
accessed when requested from the Consumer. This feature is referred to as message
persistence. Figure 4 depicts an example of message exchange where the Consumer
looses the connection to the MOM but the message does not get lost.

Figure 4: Example of message persistence [Chappell 2004].

The MOM approach is a suitable solution for the management and the integration of
the various components in the project, where several heterogeneous components are
integrated in a middleware and asynchronous communication is a requirement. If the

Page 14 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

MOM provides a reliable and flexible communication infrastructure, we need to organize
the data flow and task execution with messages in order to implement complex workflows.

For the implementation of the different workflows, we will make use of Enterprise Inte-
gration Patterns (EIP), defined in the fundamental book by G. Hohpe [Hohpe und Woolf
2003]. The EIP approach has been extensively adopted to design asynchronous messag-
ing architectures used to build integration solutions and is used in several enterprise-class
applications. The book describes 65 design patterns for the use of Enterprise Application
Integration (EAI) and MOM in the form of a pattern language. They are accepted solu-
tions to recurring problems within a given context. Patterns are abstract enough to apply
to most integration technologies, but specific enough to provide hands-on guidance to
designers and architects. Patterns also provide a vocabulary for developers to efficiently
describe their solution. Patterns are not ’invented’; they are harvested from repeated use
in practice. A coherent collection of relevant patterns that form an integration pattern
language is available on the EIP web site1.

4.2 Technologies for PoF Middleware

The PoF Middleware has been implemented using Apache ActiveMQ2. ActiveMQ is an
open source, JMS 1.1 compliant MOM from the Apache Software Foundation that pro-
vides high-availability, performance, scalability, reliability and security for enterprise mes-
saging [Snyder u. a. 2011]. It also provides all the MOM functionalities allowing the user
to implement and customize specific message producers and consumers that exchange
information through queues and topics. ActiveMQ is commonly adopted in enterprise
scenarios when an asynchronous message bus is needed (see for example [Henjes u. a.
2007, DAI und ZHU 2010] and other references available in the literature).

In our configuration ActiveMQ runs as a web application inside Tomcat (see Appendix C).
The ActiveMQ webapp also provides a GUI for the user to monitor the status of queues
and topics and the message exchange through them, as shown in Figure 5.

On top of the message broker implemented by ActiveMQ, a rule-based routing and media-
tion engine will be added in the next release of the PoF Middleware, in order to implement
the middleware workflows using one of the EIPs. The rule engine is provided by Apache
Camel3 and is briefly described in Appendix C.

4.3 PoF Middleware APIs

As will be described in Section 8, the package eu.forgetit.middleware of the PoF
Middleware Java project contain the main classes for the implementation of the PoF Mid-

1Enterprise Integration Patterns - http://www.eaipatterns.com/
2Apache ActiveMQ - http://activemq.apache.org
3Apache Camel - http://camel.apache.org

c© ForgetIT Page 15 (of 61)

http://www.eaipatterns.com/
http://activemq.apache.org
http://camel.apache.org

ForgetIT Deliverable 8.3

Figure 5: Screenshot of the ActiveMQ web GUI.

dleware. In particular, the class ConnectionFactory contains all the methods neces-
sary to set and monitor the JMS Connection to the broker. The excerpt below lists all
methods of the class to manage the connection.

public class Connect ionFactory {

private s t a t i c Logger logger = LoggerFactory . getLogger
(Connect ionFactory . class) ;

private s t a t i c ActiveMQConnectionFactory connect ion
Factory = nul l ;

private s t a t i c Connection connect ion = nul l ;
private s t a t i c boolean connected = fa lse ;

private s t a t i c L i s t<MessageConsumer> consumers = nul l ;

public s t a t i c Session getSession () throws JMSException { . . .

public s t a t i c void addConsumer (MessageConsumer
consumer) { . . .

/∗
∗ Check TCP socket connet ion to broker using NIO socket
∗ channel
∗ /

private s t a t i c void checkConnection (S t r i n g host , i n t
po r t) { . . .

public s t a t i c void closeConnect ion () { . . .
}

}

Page 16 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

The QueueManager manages the operations related to the topics or the queues through
which the messages are exchanged. Here below the methods to create the queues and
instantiate the processors and to send and consume the messages are listed.

public class QueueManager {

private s t a t i c Logger logger = LoggerFactory . getLogger
(QueueManager . class) ;
private s t a t i c QueueManager queueManager = nul l ;
private s t a t i c Con f i gu ra t i on c o n f i g u r a t i o n = nul l ;
private s t a t i c Producer producer = nul l ;
private s t a t i c L i s t<Thread> t h r e a d L i s t = nul l ;

public s t a t i c synchronized QueueManager get Ins tance () { . . .

private QueueManager () { . . .

public void sendMessage (S t r i n g message , S t r i n g
queueName) throws JMSException { . . .

public void sendMessage (Message message , S t r i n g
queueName) { . . .

public MessageConsumer getConsumer (S t r i n g queueName)
throws JMSException { . . .

private synchronized void i n i t () { . . .

private void thread (Runnable runnable , S t r i n g name,
boolean daemon) { . . .

public void stopBrokerThreads () { . . .

}

The class Producer and the abstract class Processor implement the Runnable inter-
face (used for multi-threading) for respectively generate and process a message. It is also
possible to set a specific queue as either input or output for the messages.

public class Producer implements Runnable{

private s t a t i c f i n a l Logger logger = LoggerFactory .
getLogger (Producer . class) ;
private Session session = nul l ;
private Message message = nul l ;
private S t r i n g queue = nul l ;

public Producer (Session session , Message message ,
S t r i n g queue)

public void run () { . . .

}

c© ForgetIT Page 17 (of 61)

ForgetIT Deliverable 8.3

public abstract class Processor implements Runnable ,
MessageListener {

private S t r i n g inputQueue = nul l ;
private S t r i n g outputQueue = nul l ;

public Processor (S t r i n g inputQueue , S t r i n g
outputQueue) { . . .

/ / t h i s method must be implemented by ac tua l processor ,
/ / execut ing business l o g i c f o r t h a t component
public abstract void processMessage (TextMessage message)
throws JMSException ;
public abstract void processMessage (MapMessage message)
throws JMSException ;

public void run () { . . .

@Override
public void onMessage (Message message) { . . .

public S t r i n g getInputQueue () { . . .

public S t r i n g getOutputQueue () { . . .

public MapMessage getMutableMapMessage (MapMessage
message) { . . .

}

A MessageLogger can also be instantiated in order to log all the operations performed
by the producers and processors in a given JMS Session. The methods of the class are
shown here below.

public class MessageLogger {

private s t a t i c S t r i n g logQueue = Conf igurat ionManager .
ge tCon f i gu ra t i on () . g e tS t r i ng (” log . queue ”) ;

public s t a t i c void send (S t r i n g message) { . . .

public s t a t i c void send (TextMessage message) { . . .

}

The main classes of the PoF Middleware are shown in Figure 6, Figure 7 and Figure 8.
Additional information can be found in the software documentation, see Section 8.2.

Page 18 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

Figure 6: Class diagram for PoF Middleware interface, with associated classes.

c© ForgetIT Page 19 (of 61)

ForgetIT Deliverable 8.3

Figure 7: Class diagram for PoF Middleware broker, with associated classes.

Page 20 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

Figure 8: Class diagram for PoF Middleware Processor, with associated classes.

c© ForgetIT Page 21 (of 61)

ForgetIT Deliverable 8.3

5 PoF Middleware Integrated Components

In this Section we summarize the status of the components integrated in the first release
of the PoF Framework, according to the integration plan reported in Table 15 of deliverable
D8.1 [ForgetIT 2013d]. For each component we report the corresponding WPs and the
reference deliverables (if any), a short description of the role in the overall architecture
and the deployment mechanism for its integration, the main APIs and the development
status. We also provide additional references or external links whenever available and
preliminary information about the license. The information for each component will be
updated and completed in the next PoF Framework deliverables.

5.1 ID Manager

WP and Deliverables WP8 (for integration in the messaging layer), WP3 (for scheduling
of forgetting process), WP5 (for scheduling of archiving process).

Description This component mediates between the IDs used in the Preservation System
components (Digital Repository and Cloud Storage Service) and the IDs used in the Ac-
tive Systems. It can also be used to generate new unique IDs. The IDs are managed
by means of Enterprise JavaBeans (EJB) objects, with get and set methods to edit the
internal properties corresponding to the given ID. The ID Manager is often invoked inter-
nally by the Scheduler (see Figure 9), for assigning new IDs to content processed in the
middleware.

Deployment The ID Manager is written in Java and is included in the main PoF Middle-
ware Java project (eu.forgetit.middleware.component package). The dependen-
cies are managed with Maven.

API and I/O formats The APIs of the ID Manager are used by all internal components of
the middleware, but they are also exposed to the other framework components, namely
the Active Systems and the Preservation System. REST APIs are published using Jer-
sey4, the reference implementation of JAX-RS specification for RESTful web services.
The ID Manager provides API for creating new IDs and maintains the mapping among
different IDs. Main methods include generation of new ID and retrieval of IDs from a in-
ternal repository. The IDs are stored in a pure object database, ObjectDB5, where CRUD
operations are implemented using Java Persistence API. Different standards are available
for identifiers, in the current implementation we make use of UUID. The IDs assigned to
each resource correspond to the ID in the user application (e.g. the original resource ID
created by PIMO), the ID assigned by the Digital Repository (e.g. the DSpace ID) and
the ID assigned by the PDS (the name ID used to store the resource and for maintaining
different versions). There is also a PoF Middleware ID (UUID) which is created when a
preservation request is triggered in the PoF Middleware. The APIs of the ID Manager and

4Jersey - https://jersey.java.net
5ObjectDB - http://www.objectdb.com

Page 22 (of 61) www.forgetit-project.eu

https://jersey.java.net
http://www.objectdb.com

Deliverable 8.3 ForgetIT

the associated classes in the middleware are shown in Figure 12

Development status The basic implementation for simple time-based scheduling of pro-
cesses as well as the integration in the framework is done. The next release will include
improvements and extensions of the methods based on the requirements of the other
components.

Documentation and reference links Methods and examples are available in the soft-
ware documentation, see Section 8.

License The component is released under Open Source license, the same used for the
PoF Middleware, see Section 8.

5.2 Scheduler

WP and Deliverables Component developed within WP8, the first version is described
here, deliverable D8.4 [ForgetIT 2015a] will describe the first complete release.

Description The Scheduler is responsible for managing and organizing middleware ac-
tivities, by receiving and dispatching requests for the different workflows and processes
and by interacting with the messaging infrastructure. Currently the Scheduler triggers
preservation workflows, either by receiving input from other PoF Middleware components
or by executing scheduled activities. The Scheduler is currently available as a preliminary
prototype, written in Java, supporting basic workflows. In the next framework releases will
leverage Apache Camel as rule-engine for advanced workflows. The Scheduler receives
as input a job created by the WorkflowManager (JobType objects in Figure 9), based
on the request received through the REST interface. The Scheduler can extract rele-
vant information from each job and communicate with the messaging layer components,
such as the QueueManager (see Figure 9), starting different processes by sending mes-
sages to the appropriate middleware queues. An example is provided in Appendix A. The
Scheduler depends on the ID Manager (to get the correct IDs associated to content, to be
passed in the MapMessage object) and on the ConfigurationManager (to get information
about configuration, such as the broker URL or other parameters).

Deployment The Scheduler is written in Java and is included in the main PoF Middleware
Java project (eu.forgetit.middleware.component package). The dependencies
are managed with Maven. The WorkflowManager is an additional component that has
been created to bridge the gap between the web server and the messaging layer, pre-
serving loose coupling, but could be removed or embedded in the future releases of the
Scheduler when using Apache Camel.

API and I/O formats The Scheduler has to provide APIs that allow the scheduling of pro-
cesses based on time and events, to request status information and to delete scheduled
events. A subset of these APIs has been already implemented for the first release. The
Scheduler currently exposes APIs for processing jobs received by the WorkflowManager
through the REST web server. The only public method at the moment is process, which

c© ForgetIT Page 23 (of 61)

ForgetIT Deliverable 8.3

takes as argument a JobType object (see Figure 9). According to the request type, the
Scheduler can trigger different workflows. At the moment a basic synergetic preservation
workflow and a resource restore workflow have been implemented. The job representa-
tion is based on XML and Java Enterprise JavaBeans (EJB), while the messages adopt
the Java Message Service (JMS) specification. The JMS MapMessage structure (see
Figure 9) is used to create key-value pairs with information used by other components
(e.g. content ID, resource path, etc.)

Development status Early prototype supporting basic workflows is available, to be up-
graded to integrate with Apache Camel and to support more complex workflows.

Documentation and reference links Methods and examples are available in the soft-
ware documentation, see Section 8.

License The component is released under Open Source license, the same used for the
PoF Middleware, see Section 8.

Figure 9: Class diagram for Scheduler component, with associated classes.

5.3 Forgettor

WP and Deliverables D3.2, which discusses the conceptual development and architec-
ture design of Memory Buoyancy Component as part of WP3, is integrated to the middle-
ware.

Description The Memory Buoyancy (MB) Component is responsible for estimating the
memory buoyancy values of a resource (Section 5.2, D3.1) in personal preservation con-

Page 24 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

texts. The component relies on the activity history of users in the information space (his
semantic desktops), as well as the ontological knowledge of the resource, including its
structures and its relationships with other resources. In the middleware layer, the Memory
Buoyancy Component is used as a service by the clients (PIMO or TYPO3 systems) to
enumerically assess a resource.

Deployment The MB component has two sub-components. The first sub component
serves as a background job that periodically gets triggered and estimates the resources’
MB values. The results are then cached in a database. The second component, which is
deployed directly to the middleware, is a web service repository that dispatches requests
about MB values to the database and return results for respective context (time, persons
who question, ...).

API and I/O formats The APIs Input/Output format of all services are available on L3S
REST server hosting the Forgettor6.

• Querying MB Values of PIMO resources: this service allows the client to query the
estimated MB values, and get a numerical value from 0 to 1 in plain-text as a result
(or NaN if the values are not yet estimated, or the resource is not registered in the
system).

1. REST service type: GET.

2. URI Input: http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/
query?u=<userID>&r=<resourceID>&t=<timestampinUNIXepochs>.

3. URI output: (plain-text) MB score in [0,1] or NaN.

4. Query example: http://forgetit.l3s.uni-hannover.de:8092/pimo/
mb/query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=
1384506130.

• Register PIMO resources: in order to compute the MB scores using the background
sub-component, the resources must be registered; this service allows the client to
send the list of resource IDs to register for the computation.

1. REST service type: POST.

2. URI Input: http://forgetit.l3s.uni-hannover.de:8092/pimo/res/
register.

3. URI output: A JSON reponse object that contains:
– the response status code:
∗ CREATED: the resources have been successfully registered.
∗ NOT MODIFIED: the resources are already registered, or the attempt

makes no changes in the system.
∗ INTERNAL SERVER ERROR: the server failed to register due to inter-

nal error.
6Forgettor Server - http://forgetit.l3s.uni-hannover.de:8092/application.wadl

c© ForgetIT Page 25 (of 61)

http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=<user ID>&r=<resource ID>&t=<timestamp in UNIX epochs>
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=<user ID>&r=<resource ID>&t=<timestamp in UNIX epochs>
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130
http://forgetit.l3s.uni-hannover.de:8092/pimo/mb/query?u=pimo:1327593979868:1&r=pimo:1381327141334:56&t=1384506130
http://forgetit.l3s.uni-hannover.de:8092/pimo/res/register
http://forgetit.l3s.uni-hannover.de:8092/pimo/res/register
http://forgetit.l3s.uni-hannover.de:8092/application.wadl

ForgetIT Deliverable 8.3

∗ PARTIAL CONTENT (for bulk registration): only a sub set of resources
are registered.

– the list of IDs of successfully registered resources.

4. Example client code in Java:

import javax . ws . rs . c l i e n t . AsyncInvoker ;
import javax . ws . rs . c l i e n t . C l i e n t ;
import javax . ws . rs . c l i e n t . C l i e n t B u i l d e r ;
import javax . ws . rs . c l i e n t . E n t i t y ;
import javax . ws . rs . c l i e n t . Invoca t ionCa l lback ;
import javax . ws . rs . c l i e n t . WebTarget ;
import javax . ws . rs . core . MediaType ;
import org . g l a s s f i s h . j e r sey . c l i e n t . C l i en tCon f i g ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBRequest ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBVEntity ;
import eu . f o r g e t i t . l 3s . se rv i ces . schema . MBVList ;

. . .

/ / Def ine the en t ry po in t o f the web serv i ce domain
Cl ien tCon f i g c l i e n t C o n f i g = new Cl ien tCon f i g () ;
c l i e n t = C l i e n t B u i l d e r . newCl ient (c l i e n t C o n f i g) ;
WebTarget t a r g e t = c l i e n t . t a r g e t (” h t t p : / / f o r g e t i t . l 3s . un i
−hannover . de:8092 ”) ;

. . .

/ / Def ine an asynchronous REST request
f i n a l AsyncInvoker asyncInvoker = t a r g e t . path (” / pimo /mb/
bulk−query ”) . request (MediaType . APPLICATION JSON) . async () ;

/ / Def ine a request ob jec t which conta ins c o l l e c t i o n ID
(account) , epoch value o f demanded c a l c u l a t i o n timestamp ,
and a l i s t o f resource IDs

MBRequest req = new MBRequest () ;
req . setAccount (” pimo:1327593979868:1 ”) ;
req . setTime (1386686731);

L i s t<St r ing> res = new Ar rayL i s t <>(4);
res . add (” pimo:1381327141334:56 ”) ;
res . add (” pimo:1374842706949:3 ”) ;
res . add (” pimo:1385386608202:18 ”) ;
res . add (” pimo:1381327141334:55 ”) ;
res . add (” pimo:1365627012409:41 ”) ;

req . setResources (res) ;

/ / Send the asynchronous request to the serv i ce
En t i t y<MBRequest> r e q E n t i t y = E n t i t y . e n t i t y (req , MediaType
. APPLICATION JSON) ;

MBVList futureResp = nul l ;
t ry {

futureResp = asyncInvoker . post (reqEn t i t y , new
Invocat ionCa l lback<MBVList>() {

@Override
public void completed (MBVList response) {

System . out . p r i n t l n (” Response e n t i t y ’ ” +
response + ” ’ rece ived . ”) ;
for (MBVEntity mbve : response . getValues ()) {

System . out . p r i n t l n (mbve . toCompi ledStr ing ()) ;
}

}

@Override

Page 26 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

public void f a i l e d (Throwable throwable) {
System . out . p r i n t l n (” I nvoca t i on f a i l e d . ”) ;
throwable . p r in tS tackTrace () ;

}
}) . get () ;

} catch (I n te r rup tedExcep t i on | Execut ionExcept ion e) {
e . p r in tS tackTrace () ;

}

Development status The Forgettor component is currently under development according
to the plan in deliverable D8.1 [ForgetIT 2013d]. A new version will be integrated in the
next release of the PoF Framework.

Documentation and reference links Additional information about the component can be
found in deliverable D3.2 Section 2.2-2.3 [ForgetIT 2014a].

Licenses The different components of the Forgettor are available under GNU License
GPL v3.0, Creative Commons License 3 and Apache License 2.0.

5.4 Extractor

WP and Deliverables The Extractor is part of WP4. The different technologies that are
required for realizing the Extractor were reviewed in deliverable D4.1 [ForgetIT 2013b].
Detailed description of the initial versions of the developed multimedia analysis methods
of the extractor, including usage examples, were presented in deliverable D4.2 [ForgetIT
2014b].

Description The Extractor in its preliminary version, consists of two subcomponents, for
image quality assessment and concept detection respectively. Image quality assessment
takes as input an image (or a set of images) and returns its visual quality score by ex-
amining the presence of visual artifacts such as low contrast, noise, blur, etc. Concept
detection calculates the confidence scores for a set of concepts which indicate how much
each concept is related to the image. It takes as input an image (or a set of images) and
returns for each image a vector that contains the confidence scores for all the concepts.
The class diagram of the Extractor is shown in Figure 10, where the associated Processor
in the messaging layer is also shown.

Deployment Both subcomponents of the preliminary version of the Extractor have been
deployed as REST services running in CERTH’s servers.

API and I/O formats APIs and response format (XML-based) is documented in deliver-
able D4.2 [ForgetIT 2014b].

Development status The image quality assessment subcomponent will be extended in
order to assess the aesthetic quality of an image. In concept detection, the concepts set
will be modified in order to include more representative concepts and the effectiveness
of the automatic annotation will be improved. Furthermore, more subcomponents will
be added in the next version of the Extractor including image and face clustering, fast

c© ForgetIT Page 27 (of 61)

ForgetIT Deliverable 8.3

detection of duplicate images, single/multidocument text summarization and automatic
entity disambiguation in text.

Documentation and reference links Additional information about the Extractor compo-
nent and the RESTful web service can be found in deliverable D4.2 [ForgetIT 2014b].

License The Extractor subcomponents are Copyright c©2013-2014 CERTH. Some of
these subcomponents make internal use of third party software and libraries, such as
OpenCV (BSD license) and Liblinear (Copyright c©2007-2013 the LIBLINEAR Project).
The license for the Extractor component will be further analysed and described in deliv-
erable D8.4 [ForgetIT 2015a].

Figure 10: Class diagram for Extractor, with associated classes.

5.5 Contextualizer

WP and Deliverables The Contextualizer is part of WP6. The different technologies that
are required for realizing the Contextualizer were reviewed in D6.1. Detailed descrip-
tion of prototype versions of a number of contextualization components, including usage
examples, were presented in deliverable D6.2 [ForgetIT 2014d].

Description There are currently a number of components developed to perform con-
textualization over both text and images. The image component contextualizes a photo
collection by adding additional images which provide a richer context. In contrast the text
components add context in a number of different ways including the addition of full text
and ontology instances. The class diagram for the Contextualizer is shown in Figure 11,
where the associated Processor in the messaging layer is also shown.

Page 28 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

Deployment The prototype version of the contextualization via disambiguation compo-
nent has been deploayed as a REST service integrated into the PoF Middleware.

API and I/O formats The integrated component is accessed via a REST interface.

Documentation and reference links Additional information about the Contextualizer is
available in deliverable D6.2 [ForgetIT 2014d].

License The contextualization via disambiguation component is Copyright c©2013-2014
The University of Sheffield and is released under the LGPL.

Figure 11: Class diagram for Contextualizer, with associated classes.

5.6 Collector/Archiver

WP and Deliverables Component developed in WP5, described in deliverable D5.2 [For-
getIT 2014c].

Description The Collector is responsible for fetching resources from user applications
using CMIS, to create the SIP structure and to build the SIP collecting the results from
all components. Archiver is responsible for ingesting SIP into Preservation System. Re-
sources in the Preservation System can be retrieved using the Collector, which interacts
with the ID Manager to get information about the resource IDs, as shown in Figure 12.

Deployment Currently the component is available as Java Archive added as additional
dependency to the PoF Middleware Java project. In the future the component source
code could be integrated in the eu.forgetit.middleware.component package.

API and I/O formats The component provides APIs for fetching content from user appli-
cations using CMIS protocol and to manage SIP/DIP.

Development status Preliminary prototype, used for implementing the two basic work-
flows. Requires further testing and development to support advanced features related to
concurrency and to better implement the CMIS client.

Documentation and reference links Available in D5.2.

c© ForgetIT Page 29 (of 61)

ForgetIT Deliverable 8.3

License Available as open source license from LTU.

Figure 12: Class diagram for ID Manager and Collector/Archiver, with associated classes.

Page 30 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

6 Active Systems

6.1 Semantic Desktop

WP and Deliverables Main development in WP9 with technical contributions from WP3,
WP4, WP5, and WP8. Explanations in deliverables D8.1 Section 3.1 [ForgetIT 2013d],
D9.1 [ForgetIT 2013e] and especially D9.2 [ForgetIT 2014g], when describing the mock-
ups.

Description The Semantic Desktop is a personal information management system with
an underlying ontology semantically describing the users mental model and the resources
involved. This ontology is the Personal Information MOdel (PIMO). The Semantic Desk-
top infrastructure consists of a PIMO Server with a dedicated API so that any third party
software could use the PIMO for its own purposes (e.g., using it as tagging vocabulary).
In addition, a combination of plug-ins for (some) standard applications as well as dedi-
cated components/UI for specific purposes (such as task management, photo collection)
is provided. In ForgetIT the Semantic Desktop serves as a means to learn about users re-
sources, their usage over time, importance, interrelations, and context for each resource
from the PIMO. Once the ForgetIT services are combined with the Semantic Desktop
infrastructure, synergetic preservation is realized with nearly no additional effort. The
PIMO will also provide context information for realizing contextual remembering as well
as means for contributing to managed forgetting. The infrastructure will be enhanced with
several ForgetIT services such as image quality assessment or text condensation.

Deployment The PIMO consists of a number of web applications that are deployed (as
WAR files) to an Apache Tomcat application server running on a dedicated virtual machine
in the EURIX testbed environment.

API and I/O formats In the ForgetIT context, the PIMO provides its contents through a
CMIS service. It uses a SemanticDesktop endpoint on the middleware (see Figure 6) to
set preservation values for documents and to restore documents from the archive.

Development status All functionality for the basic workflow is implemented. This includes
the CMIS service as well as the connection to the middleware REST API. In further re-
leases, there will be a more complex communication with the REST API.

Documentation and reference links Additional information about the PIMO is available
on DFKI PIMO web site7.

Licence The componenent is available under a BSD-compliant license for interfaces and
PIMO model; the implementation is available for free use in ForgetIT under the consortium
agreement terms.

7DFKI PIMO - https://pimo.opendfki.de

c© ForgetIT Page 31 (of 61)

https://pimo.opendfki.de

ForgetIT Deliverable 8.3

6.2 TYPO3

WP and Deliverables Main development in WP10 with conceptual contribution from WP2
and technical from WP3, WP4, WP5 and WP8. The architecture of the overall system
structure is described in D8.1. Details about how TYPO3 CMS will be amended and
integrated can be found in D10.1 [ForgetIT 2013a], including mock-ups.

Description TYPO3 CMS is an open source web Content Management System, used
by a wide range of organizations around the globe. It is written in PHP and fully open
sourced under GPL/MIT licenses. In the context of the ForgetIT, dkd will develop a set of
TYPO3 extensions which will allow usage of the PoF Framework and the datastore. The
scope of those extensions is described in D10.1 [ForgetIT 2013a].

Deployment TYPO3 CMS runs on a web server using MySQL and PHP. To connect to
the PoF Framework a second server running the Java application Alfresco Community
Edition (CE) is used as a CMIS content repository. Both systems are pre-configured and
set up as dedicated virtual machines in the EURIX testbed environment.

API and I/O formats In the ForgetIT context, the TYPO3 CMS provides its contents
through a CMIS service. It will utilize REST APIs of the middleware communicate to
the PoF Framework.

Development status During the first year, dkd delivered a description of the concept-
s/technical solution design in D10.1 [ForgetIT 2013a] and a proof of concept to verify
TYPO3 CMS integration into CMIS. The plan for the second year is to deliver a first run-
ning, releasable version including semantic annotation. Currently dkd is working on a
scalable integration of CMIS into TYPO3 CMS by creating a set of five extensions.

Documentation and reference links For more background on TYPO3 visit the project
web site8. For additional information about Alfresco CE, visit the product web site9.

Licence The licences have not been chosen yet, but they will likely be either GPL or
Apache compliant licenses, depending on the code dkd bases its work on.

8TYPO3 - http://www.typo3.org
9Alfresco Community Edition - http://www.alfresco.com/products/community

Page 32 (of 61) www.forgetit-project.eu

http://www.typo3.org
http://www.alfresco.com/products/community

Deliverable 8.3 ForgetIT

7 Preservation System

In the following Sections we describe the implementation of the two components of the
Preservation System, namely the Digital Repository and the Cloud Storage Service.

7.1 Digital Repository: DSpace

As described in D8.1 [ForgetIT 2013d], several candidate platforms have been evaluated
for the Digital Repository. DSpace10 has been selected according to the identified assess-
ment criteria. DSpace digital repository is already described in detail in Section 7.1 and
Table 18 of deliverable D8.1 [ForgetIT 2013d]. In order to enable the interaction between
the PoF Middleware and the DSpace repository, REST APIs for both the access and the
ingest processes have been implemented. The ingest interface is used to trigger opera-
tions related to the SIP validation, its submission and the creation of the AIP. The access
interface is used for the dissemination of the AIPs.
@Path(” access ”)
public class Access {

private Response response = nul l ;

@GET
@Produces (MediaType . APPLICATION JSON)
@Path(” c o n f i g u r a t i o n ”)
public Response showPropert ies () { . . .

@GET
@Produces (MediaType . APPLICATION JSON)
@Path(” a ip ”)
public Response re t r i eveA IP (@QueryParam(” a ip ID ”) S t r i n g
aipID , @QueryParam(”name”) S t r i n g aipName , @QueryParam
(” format ”) S t r i n g format) { . . .

@Path(” i nges t ”)
public class Inges t {

private Logger logger = LoggerFactory . getLogger (Inges t .
class) ;

private Response response = nul l ;
private S t r i n g e r r o r = nul l ;

@POST
@Consumes(MediaType .MULTIPART FORM DATA)
@Produces (MediaType . APPLICATION JSON)
@Path(” s ip ”)
public Response ingestPackage (
@FormDataParam(” f i l e ”) FormDataBodyPart body ,
@FormDataParam(”name”) S t r i n g sipName ,
@FormDataParam(” user ”) S t r i n g user ,
@FormDataParam(” f i l e ”) FormDataContentDisposi t ion
f i l e D e t a i l ,
@Context HttpHeaders headers) { . . .

10DSpace - http://www.dspace.org

c© ForgetIT Page 33 (of 61)

http://www.dspace.org

ForgetIT Deliverable 8.3

An excerpt of the code of both the ingest and access APIs is reported above, where the
Jersey resources exposing REST APIs are shown. For additional details please refer to
the software documentation reported in Section 8.2. DSpace internal data model is repre-
sented in Figure 13. Digital objects are organized into several layers such as collections,
communities, items, and sites. As far as the installation process is concerned, we pro-
vide an installation guide tailored to ForgetIT environment in Section B.2 of Appendix B.
Additional information can be found in the official DSpace guide on the project wiki11.

Figure 13: DSpace Data Model diagram.

The ingest and access endpoints exposed by the Preservation System are depicted in
Figure 14. The code is written in Java and is deployed in the main PoF Middleware Java

11DSpace Guide - https://wiki.duraspace.org/display/DSDOC4x/Installing+DSpace

Page 34 (of 61) www.forgetit-project.eu

https://wiki.duraspace.org/display/DSDOC4x/Installing+DSpace

Deliverable 8.3 ForgetIT

project, as part of the eu.forgetit.preservation.server package. A Response
class is defined, which enables the conversion of the original server response into different
formats (XML, JSON, etc.). Other components of the Digital Repository are shown in
Figure 14, for validating the ingested SIP and for performing different operations, including
the export of the AIP in the Cloud Storage Service (Packager).

Figure 14: Class diagram for Preservation System endpoint, with associated classes.

7.2 Cloud Storage: PDS and Storlet Engine

Despite the increase in the ability to store digital data, the ability to maintain these data
readable and useful over time decreases, for example, due to frequent changes in ren-
dering technologies. Preservation DataStores (PDS) [Rabinovici-Cohen u. a. 2008; 2013]
component provides a preservation-aware storage infrastructure for ForgetIT on top of
OpenStack cloud storage. PDS supports the core standard for digital preservation sys-
tems, namely the Open Archival Information System (OAIS) [CCSDS 2012] and provides
functions for the storage and retrieval of AIPs. PDS exposes an HTTP-based external in-
terface that is based on OAIS and supports operations for ingest, access and preservation
actions of AIPs.

c© ForgetIT Page 35 (of 61)

ForgetIT Deliverable 8.3

PDS performs preservation-related computations functions within the storage system via
Storlets running in a sandbox. Storlets are general purpose (yet restricted) routines that
may execute computations close to the data within the storage layer. Running within the
storage close to the data, Storlets can reduce the bandwidth required to move bytes to an
application server (possibly over WAN) for processing. Storlets also improve security and
reduce the exposure of private data over the network.

PDS works on top of OpenStack Swift12, an open source software for creating redundant,
fault-tolerant, eventually consistent object storage. It is a distributed scalable system,
and uses clusters of standardized servers to store petabytes of accessible data. Having
no central brain or master point of control provides greater scalability, redundancy and
permanence. Objects are written to multiple hardware devices in the data center, with the
OpenStack software responsible for data replication and integrity across the cluster.

The gap analysis of existing storage clouds [Rabinovici-Cohen u. a. 2013] revealed that
simply storing data onto the cloud is not an adequate solution for digital preservation
repositories. The Archival Storage component is designed to overcome some of these
gaps. For example, a digital preservation system may need to perform periodical data
intensive tasks, such as data transformations. Data transformation computations are typ-
ically data intensive; hence, they are natural candidates to be executed as Storlets, close
to the data stored on the same local server. The typical purpose for performing data trans-
formation Storlets includes ease of future use (e.g., the target format is easier to read and
render than the original format), efficiency gain (e.g., the target format consumes less
space to store, or less CPU cycles to render), and change of standards over time.

One data transformation Storlet that has been already integrated and tested in the PoF
Framework is a Storlet for automatically converting proprietary-formatted DNG images
to non-proprietary TIFF files, for viewing with general purpose applications. This Storlet
uses the ImageMagick13 open source library.

Another Storlet which has been implemented is based on an image analysis software
package, which was prepared by ForgetIT partners in WP4, see deliverable D4.2 [For-
getIT 2014b]. The Storlet runs on a set of image objects, and uses the image analysis
software package to analyze them, and extracts feature vectors, which may be used to
characterize and describe the input images.

12OpenStack Swift - https://wiki.openstack.org/wiki/Swift
13ImageMagick - http://www.imagemagick.org/script/index.php

Page 36 (of 61) www.forgetit-project.eu

https://wiki.openstack.org/wiki/Swift
http://www.imagemagick.org/script/index.php

Deliverable 8.3 ForgetIT

8 First Prototype Implementation

In this Section we provide a quick description of the adopted approach for software de-
velopment, deployment and testing and also provide a few details about the software
documentation and the source code access.

8.1 Software Development, Deployment and Testing

The prototype has been developed adopting the Java language. Two main projects have
been created, one for the PoF Middleware and one for the Preservation System. Since
the applications in the framework are distributed, we use the Java Enterprise Edition (EE)
framework and the Eclipse IDE14 for Java EE Developers. The version of the IDE used
for the first release is Kepler, the development environment and the dependencies will be
migrated to new versions when they are available. Eclipse is an extensible IDE supporting
add-ons and plug-ins developed by the Eclipse community or by third parties. We adopted
exclusively open source plug-ins, in order to prevent vendor lock-in for future adopters of
ForgetIT software. The software development leverages versioning tools, such as Sub-
version (SVN)15, and issue tracking systems such as Trac16. We configured Eclipse with
additional plug-ins for SVN and Maven (see below). The code repository and the ticketing
system are available to all partners and are used by all WPs to establish a collabora-
tive approach. Automatic notification systems for both code changes and issue tracking
are used. We use the popular Maven17 tool to compile, build and deploy the software
projects. This tool is integrated in the Eclipse IDE. The external dependencies are written
in a pom.xml file. The main advantage is that all dependencies are retrieved from public
repositories before compiling the software and are included in the software project. The
dependency management is simplified and facilitates the work of the development team.

The two main projects for the PoF Middleware and the Digital Repository are Java web
applications and their deployment is performed by simply including the war files in the
webapps folder of Tomcat718. When Tomcat starts, all the web applications are deployed
and become available for the user. Currently there are three different web applications
for the Digital Repository, for the PoF Middleware REST web server and for the PoF
Middleware messaging system. The structure of the Java EE projects ib Eclipse for the
PoF Middleware and the Preservation System are shown in Figure 15 and Figure 16. The
main Java packages of both projects are briefly described in Table 1.

In order to test the developed software, we performed unitary tests using JUnit19. Virtual-
ization is used for deploying into the testbed environment the VMs with the components

14Eclipse IDE - http://www.eclipse.org
15Apache Subversion - https://subversion.apache.org
16The Trac Project - http://trac.edgewall.org
17Apache Maven - http://maven.apache.org
18Apache Tomcat - http://tomcat.apache.org
19JUnit - http://junit.org

c© ForgetIT Page 37 (of 61)

http://www.eclipse.org
https://subversion.apache.org
http://trac.edgewall.org
http://maven.apache.org
http://tomcat.apache.org
http://junit.org

ForgetIT Deliverable 8.3

developed by different WPs running on different servers. For the testbed environment
we use KVM (see deliverable D8.1[ForgetIT 2013d]), while for smaller test activities Vir-
tualBox20 has been often used. The component themselves have been verified to work
properly through dry run experiments, then test interfaces have been implemented and
the interaction between the PoF Middleware and the other components have been tested
running different workflows.

Figure 15: Structure of the Java EE project for the PoF Middleware

Figure 16: Structure of the Java EE project for the Preservation System

20VirtualBox - https://www.virtualbox.org

Page 38 (of 61) www.forgetit-project.eu

https://www.virtualbox.org

Deliverable 8.3 ForgetIT

Package Description
eu.forgetit.middleware This package contains classes to perform basic functions

such as managing the workflows, reading properties files,
creating key-value maps for the jobs, .

eu.forgetit.middleware.broker The functions to manage the ActiveMQ broker are con-
tained. By means of the ConnectionFactory class a
JMS Session and a Connection are created when neces-
sary, there are specific classes to create Processor and
Producer objects. There are also a QueueManager class
for the management of the message queues and a class for
the logging messages.

eu.forgetit.middleware.component This package contains a class for each of the PoF Middle-
ware components, for example Archiver, Condensator,
Forgettor, and the like.

eu.forgetit.middleware.gui It contains the MessageReader servlet class to read in-
coming messages, there is also the XMLReader class
whose task is to read and get information from an XML
file.

eu.forgetit.middleware.model The DBManager class contains methods to interact with
the local database. The IDMappingBean is used to gen-
erate and assign IDs. The classes in these packages cor-
responding to specific metadata schema, such as Dublin
Core and MODS, have been automatically generated from
the metadata XML files by means of JAXB.

eu.forgetit.middleware.processor The processing of the message content is carried out
through the method of the classes here contained.
Such classes are, for example, ContentArchival,
ImageConceptDetection or PackageCreation.

eu.forgetit.middleware.server It contains classes to interact with the PoF Mid-
dleware such as the ServiceEndpoint and the
MiddlewareListener classes.

eu.forgetit.middleware.utils Several tools for the management of messages and
content are provided. For example the ImageTools
class contains methods to convert images or the
MiddlewareTools class provides methods to compress
a directory (used for packaging purposes).

eu.forgetit.preservation.component Packager and SIPValidator classes allow to perform
the ingest and the validation of a submission package. It is
also possible to export an ingested AIP.

eu.forgetit.preservation.server The Digital Repository uses the classes and methods in
this package to perform the Ingest and Access operations.

eu.forgetit.preservation.utils It contains classes and methods necessary for
the Digital Repository management such as the
ConfigurationManager class and the ArchiveTools,
whose methods allow to both create and extract com-
pressed archives.

Table 1: Packages of the PoF Middleware and Preservation System projects.

c© ForgetIT Page 39 (of 61)

ForgetIT Deliverable 8.3

8.2 Source Code Documentation, Availability and License

The source code of the PoF Framework components and the documentation is available
on the project web site along with other project results, at the following URL:

http://www.forgetit-project.eu/en/project-results

The pre-compiled binaries (web applications, executables, libraries) as well as instruc-
tions for the installation and usage are provided by project partners. When new versions
of the framework components are released, they will be updated on the web site. For
detailed documentation about each component please refer to WP8 deliverables and to
deliverables provided by the corresponding WP.

The project consortium agreed upon releasing the PoF Framework source code under
an open source license. The chosen license type (e.g. GPL, LGPL, Apache, etc.) is
still under discussion and will be defined for the second prototype release, described in
deliverable D8.4 [ForgetIT 2015a].

It is worth noting that the core libraries for the implementation of the PoF Middleware
are already available under the Apache license and that several components developed
within the project will be released as open source (see previous Sections). Any additional
code developed to implement the PoF Middleware will be available as open source, as
well. Concerning the Preservation System, the Digital Repository is based on DSpace
(available under the BSD license), while the licensing mechanism adopted by IBM for the
Storlet Engine is still under evaluation at the moment of writing (Openstack Swift is already
available as open source). Concerning the Active Systems, TYPO3 is already available
as open source, the licensing of additional customization is still under evaluation, while
the Semantic Desktop will be available as open source. A task force has been established
in the project, which will evaluate different open source licenses available, also taking into
account third party dependencies used to implement the different components.

Page 40 (of 61) www.forgetit-project.eu

http://www.forgetit-project.eu/en/project-results

Deliverable 8.3 ForgetIT

9 Summary and Future Work

The document provides a description of the first release of the PoF Framework which was
demonstrated at the first annual project review. The overall structure of the framework,
the way the main components are implemented and how they interact is discussed. The
concept of MOM and EIP have been also described. Finally we provided additional details
about the software development and documentation.

The development and integration status of the components described in this document
is referred to the first release, according to the plan reported in Table 15 of D8.1. The
second release of the PoF Framework will be described in deliverable D8.4.

The software prototype reported in this document is the result of the effort performed
by all partners during the first year, starting from the architecture defined in deliverable
D8.1. The main challenges were the setup of a collaborative environment to share de-
veloped software and for testing the results, the agreement on tools and technologies
for the development and the integration of the software developed by other partners in a
coherent framework. The collaborative tools described in the document and the periodic
discussions during WP8 and plenary meetings were very useful for the delivery of the first
prototype in time for the first review, anticipating the original plan in the DoW. The same
approach will be kept for the second release. A huge effort was required to integrate
many components which were still early prototypes. The clear definition of the priority
workflows for the first prototype was useful to correctly focus the development effort. New
and more complex workflows have been identified for the second release.

c© ForgetIT Page 41 (of 61)

ForgetIT Deliverable 8.3

Glossary

EAI Enterprise Application Integration. 9, 15

EIP Enterprise Integration Patterns. 6, 9, 15, 61

EJB Enterprise JavaBeans. 22, 24

ESB Enterprise Service Bus. 6, 9

JMS Java Message Service. 24, 59

MB Memory Buoyancy. 24, 25

MOM Message Oriented Middleware. 6, 10, 11, 13, 61

OAIS Open Archival Information System. 6, 35

PDS Preservation DataStores. 11, 35

PIMO Personal Information MOdel. 31

PoF Preserve-or-Forget. 6–11, 22–24, 29, 32, 34, 37, 38, 45, 52, 61

Page 42 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

References

[CCSDS 2012] CCSDS: Reference Model for an Open Archival Information Sys-
tem (OAIS) - Recommended Practice, CCSDS 650.0-M-2 (Magenta Book) Issue
2. Also available as ISO Standard 14721:2012. http://public.ccsds.org/
publications/archive/650x0m2.pdf. June 2012. – Retrieved 29 August 2014

[Chappell 2004] CHAPPELL, David: Enterprise service bus. O’Reilly Media, Inc., 2004

[DAI und ZHU 2010] DAI, Jun ; ZHU, Xiao-Min: Design and Implementation of an Asyn-
chronous Message Bus Based on ActiveMQ. In: Computer Systems & Applications 8
(2010), S. 062

[ForgetIT 2013a] FORGETIT: Deliverable D10.2: Application Mockups and Prototypes.
February 2013

[ForgetIT 2013b] FORGETIT: Deliverable D4.1: Information Analysis, Consolidation and
Concentration for Preservation – State of the Art and Approach. July 2013

[ForgetIT 2013c] FORGETIT: Deliverable D7.1: Foundations of Computational Storage
Services. July 2013

[ForgetIT 2013d] FORGETIT: Deliverable D8.1: Integration Plan and Architectural Ap-
proach. December 2013

[ForgetIT 2013e] FORGETIT: Deliverable D9.1: Application Use Cases & Requirements
Document. August 2013

[ForgetIT 2014a] FORGETIT: Deliverable D3.2: Components for Managed Forgetting –
First Release. February 2014

[ForgetIT 2014b] FORGETIT: Deliverable D4.2: Information Analysis, Consolidation and
Concentration Techniques, and Evaluation – First Release. February 2014

[ForgetIT 2014c] FORGETIT: Deliverable D5.2: Workflow Model and Prototype for Tran-
sition between Active System and AIS. February 2014

[ForgetIT 2014d] FORGETIT: Deliverable D6.2: Contextualisation Tools – First Release.
February 2014

[ForgetIT 2014e] FORGETIT: Deliverable D7.2: Computational Storage Services – First
Release. February 2014

[ForgetIT 2014f] FORGETIT: Deliverable D8.2: Preserve-or-Forget Reference Model –
Initial Model. September 2014

[ForgetIT 2014g] FORGETIT: Deliverable D9.2: Use Cases & Mock-up Development.
February 2014

c© ForgetIT Page 43 (of 61)

http://public.ccsds.org/publications/archive/650x0m2.pdf
http://public.ccsds.org/publications/archive/650x0m2.pdf

ForgetIT Deliverable 8.3

[ForgetIT 2015a] FORGETIT: Deliverable D8.4: Preserve-or-Forget Framework – Sec-
ond Release. April 2015

[ForgetIT 2015b] FORGETIT: Deliverable D8.5: Preserve-or-Forget Reference Model –
Final Model. February 2015

[Henjes u. a. 2007] HENJES, Robert ; SCHLOSSER, Daniel ; MENTH, Michael ; HIMM-
LER, Valentin: Throughput performance of the ActiveMQ JMS server. In: Kommunika-
tion in Verteilten Systemen (KiVS) Springer (Veranst.), 2007, S. 113–124

[Hohpe und Woolf 2003] HOHPE, Gregor ; WOOLF, Bobby: Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging Solutions. Boston, MA, USA :
Addison-Wesley Longman Publishing Co., Inc., 2003. – ISBN 0321200683

[Rabinovici-Cohen u. a. 2008] RABINOVICI-COHEN, Simona ; FACTOR, ME ; NAOR,
Dalit ; RAMATI, Leeat ; RESHEF, Petra ; RONEN, Shahar ; SATRAN, Julian ; GIARETTA,
David L.: Preservation DataStores: New storage paradigm for preservation environ-
ments. In: IBM Journal of Research and Development 52 (2008), Nr. 4.5, S. 389–399

[Rabinovici-Cohen u. a. 2013] RABINOVICI-COHEN, Simona ; MARBERG, John ; NAGIN,
Kenneth ; PEASE, David: PDS Cloud: Long term digital preservation in the cloud. In:
Cloud Engineering (IC2E), 2013 IEEE International Conference on IEEE (Veranst.),
2013, S. 38–45

[Snyder u. a. 2011] SNYDER, Bruce ; BOSNANAC, Dejan ; DAVIES, Rob: ActiveMQ in
action. Manning, 2011

Page 44 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

A Demo of the first prototype

In this Section we describe a simple demo showing the integrated components and the
implementation of the two priority workflows. The demo is presented as a sequence of
steps, with the help of some application screenshots.

1. A preservation event is triggered by the Active System (see Figure 17): the way
this event is generated is still under development, it could be a suggestion from a
PoF Middleware component (Forgettor) or could be due to a scheduled activity.

Figure 17: User interface of PIMO: selection of resource to be preserved.

2. A request is sent to the PoF Middleware via HTTP, using the REST APIs de-
scribed in the previous Sections.

3. A Synergetic Preservation Worklow is triggered by the WorkflowManager, which
creates a new job parsed by the Scheduler, which in turn sends the initial mes-
sage to a queue on the messaging system (RETRIEVE.RESOURCE.QUEUE), as
depicted in Figure 18, where the different queues available on the broker are shown,
as well as the running instances of message processors (Consumers) listening to
each queue and the number of pending and consumed messages.

4. The resource is retrieved from the CMIS server published by the Active System:
the Collector, listening to RETRIEVE.RESOURCE.QUEUE, processes the mes-
sage and uses the information therein (the resource URI) to retrieve the resource
from the CMIS server.

5. The ID Manager generates a new ID to uniquely identify the content package.

c© ForgetIT Page 45 (of 61)

ForgetIT Deliverable 8.3

Figure 18: Queues published by the messaging system for the different workflow steps

6. The Collector stores the retrieved resource on the PoF Middleware server.

7. Flow control is returned to Scheduler, new messages containing resource infor-
mation are sent to next queues in the workflow (QUALITY.ASSESSMENT.QUEUE,
CONCEPT.DETECTION.QUEUE, CONTEXTUALIZATION.QUEUE) as shown in Fig-
ure 18, in order to trigger other components required for asynchronous and parallel
content processing.

8. The Extractor, listening to the queues QUALITY.ASSESSMENT.QUEUE and CON-
CEPT.DETECTION.QUEUE, processes all messages and retrieves information re-
quired for image analysis (QA and concept detection), such as the resource path on
the server and the content ID. Examples of results from preliminary QA and concept
detection are shown below.
<?xml vers ion = ”1 .0 ” encoding =” ISO−8859−15” standalone =”no”?><Qual i tyMeasure detect ion>

<Qua l i t yMeasu res l i s t>
<Quali tyMeasure i d =”C1”>Blur </QualityMeasure>
<Quali tyMeasure i d =”C2”>Contrast </QualityMeasure>
<Quali tyMeasure i d =”C3”>Darkness</QualityMeasure>
<Quali tyMeasure i d =”C4”>Noise</QualityMeasure>

</ Qua l i t yMeasu res l i s t>
<Qual i tyMeasures order>C1 C2 C3 C4</Qual i tyMeasures order>
<Image Qual i tyMeasures Lis t>

<Image us e r i d =” user 522\1001IMG 117 . jpg ”>
<image ur l>

h t t p : / / middleware / pubstore /7 cfc1a06−cbd7−4ba4−8c7e−e0d611b436e9 / IMG 117 . jpg
</ image ur l>
<image id>1</ image id>
<conf idence scores >0.682564 0.128376 0.29313 0.106106</ conf idence scores>
<imagequa l i t y score >0.63686</ imagequa l i t y score>

</Image>
</ Image Qual i tyMeasures Lis t>

</Qual i tyMeasure detect ion>

<?xml vers ion = ”1 .0 ” encoding =” ISO−8859−15” standalone =”no”?><Concept detect ion>
<Concep ts l i s t>

<concept i d =”C1”>3 Or More People </concept>

Page 46 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

<concept i d =”C2”>Actor </concept>
. . . .
<concept i d =”C157”>Windows</concept>

</ Concep ts l i s t>
<Concepts order>C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42
C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64
C65 C66 C67 C68 C69 C70 C71 C72 C73 C74 C75 C76 C77 C78 C79 C80 C81 C82 C83 C84 C85 C86
C87 C88 C89 C90 C91 C92 C93 C94 C95 C96 C97 C98 C99 C100 C101 C102 C103 C104 C105 C106
C107 C108 C109 C110 C111 C112 C113 C114 C115 C116 C117 C118 C119 C120 C121 C122 C123
C124 C125 C126 C127 C128 C129 C130 C131 C132 C133 C134 C135 C136 C137 C138 C139 C140
C141 C142 C143 C144 C145 C146 C147 C148 C149 C150 C151 C152 C153 C154 C155 C156 C157
</Concepts order>
<Image Concepts List>

<Image us e r i d =”C:\ apache−tomcat−6.0.9\webapps\ROOT\CERTH BIN\
Forget IT Concept Detec t ion Serv ice\Images\user 594\1001IMG 3035 .JPG”>
<image ur l>h t t p : / / middleware / pubstore / d78d2bdd−49b7−45c2−ab3c−22e3ff520d87 /

IMG 3035 .JPG</ image ur l>
<image id>1</ image id>
<conf idence scores>

0.00390902866666667
0.05104722
. . .
0.449944026666667

</ conf idence scores>
</Image>

</ Image Concepts List>
</Concept detect ion>

9. The Contextualizer processes messages for text contextualization (mentions
and context) retrieved from CONTEXTUALIZATION.QUEUE. In the following a short
excerpt of a text document from TYPO3 CMS is shown, with the extracted mentions.
The context ntuples are also created (being a huge file, it is not shown here).
TYPO3 ce lebra tes i t ’ s 20 th ann iversary . Having been one of the very f i r s t Content Management
Systems on the market 20 years o f market leadersh ip i s an achievement t r u l y worth
c e l e b r a t i n g . Let ’ s take a minute to r e f l e c t on the 20 years passed :
< l i >1997: The idea f o r TYPO3 i s born</ l i >< l i >2000: The TYPO3 community i s born< l i >
< l i >2005: the f i r s t TYPO3 conference i s held </ l i >< l i >2008: TYPO3 reaches a market share o f
c lose to 40\% i n c e n t r a l Europe</ l i >< l i >2010: TYPO3 5.0 shakes up the CMS world </ l i >
< l i >2014: 95\% of the world ’ s websi tes run on Open Source and 60\% on TYPO3</ l i >< l i >2017:
Happy 20 th B i r thday TYPO3</ l i ></u l> A l l the TYPO3 en thus ias ts i n the world :
Keep up the great work !

h t t p : / / dbpedia . org / resource / Open source
h t t p : / / dbpedia . org / resource / Content management system
h t t p : / / dbpedia . org / resource / Happiness
h t t p : / / dbpedia . org / resource /TYPO3
h t t p : / / dbpedia . org / resource / Europe
h t t p : / / dbpedia . org / resource / B i r thday

This process is executed in parallel to image analysis and, with the current imple-
mentation, it is only applied to text documents. It is worth mention that the last two
steps are executed asynchronously, as shown in Figure 19.

10. Flow control is returned to Scheduler, messages containing processing results
are sent to the queue used for SIP preparation (CREATE.PACKAGE.QUEUE).

11. The Archiver, listening to CREATE.PACKAGE.QUEUE, processes messages with
requests of SIP preparation, retrieving all resources and metadata. When the SIP is

c© ForgetIT Page 47 (of 61)

ForgetIT Deliverable 8.3

Figure 19: PoF Middleware GUI: log messages for all asynchronous processes.

ready, it is ingested into the Preservation System using REST APIs described
in previous Sections. REST APIs exposed by the Preservation System are
used to send the SIP via HTTP POST request. DSpace is configured by the Digi-
tal Repository administrator, with a defined ForgetIT community and a testbed
collection, as shown in Figure 20.

Figure 20: DSpace administrative GUI, with collections and communities.

Page 48 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

12. The SIP structure contains a manifest file based on METS and two folders for con-
tent and metadata (see WP5 deliverables). This SIP is compliant to DSpace data
model and can be accessed also using DSpace admin GUI (see Figure 21). We use
the same structure also for the AIP, allowing two different export formats for the DIP,
based on DSpace functionalities: one based on a METS profile and one defined as
Simple Archive Format with Dublin Core manifest file (see Figure 22). An example
of METS file associated is shown in the following.

Figure 21: AIP preview: bitstreams and metadata files.

<?xml vers ion = ”1 .0 ” encoding =”UTF−8” standalone =” yes”?>
<mets xmlns =” h t t p : / / www. loc . gov /METS/ ” xmlns : ns2 =” h t t p : / / www.w3 . org /1999/ x l i n k ”
xmlns : ns3 =” h t t p : / / www. loc . gov / mods / v3 ” ID =” cbcf f166−809d−46ac−a2bb−cf124df47365 ”
OBJID=”d78d2bdd−49b7−45c2−ab3c−22e3ff520d87 ” TYPE=”DSpace ITEM”
PROFILE=”DSpace METS SIP P r o f i l e 1.0”>

<dmdSec ID =”dmdSec 1”>
<mdWrap MDTYPE=”MODS”>

<xmlData>
<ns3 : mods>

<ns3 : t i t l e I n f o >
<ns3 : t i t l e >SIP 2014−04−24T18:51:55< / ns3 : t i t l e >

</ns3 : t i t l e I n f o >
<ns3 : i d e n t i f i e r type =” u r i ”>

pimocloud :586a6de3−9aa6−4832−b6c4−f98e0beaaf41
</ns3 : i d e n t i f i e r >

</ns3 : mods>
</xmlData>

</mdWrap>
</dmdSec>
<f i l eSec>

<f i l e G r p USE=”ORIGINAL”>
< f i l e ID =”cn−f i l e −0001” MIMETYPE=” image / jpeg ” SIZE=”1779948”

CHECKSUM=”3 c00d41925ffd8507773ca979ef97ae6 ” CHECKSUMTYPE=”MD5”>
<FLocat LOCTYPE=”URL” ns2 : type =” simple ” ns2 : h re f =” content / IMG 3035 .JPG”/>

</ f i l e >
</ f i l eG rp>
<f i l e G r p USE=”METADATA”>

< f i l e ID =”md−f i l e −0002” MIMETYPE=” a p p l i c a t i o n / xml ” SIZE=”906”

c© ForgetIT Page 49 (of 61)

ForgetIT Deliverable 8.3

CHECKSUM=”50807131447d3718e724f837a8a4cd47 ” CHECKSUMTYPE=”MD5”>
<FLocat LOCTYPE=”URL” ns2 : type =” simple ” ns2 : h re f =” metadata / imageQA . xml ”/>

</ f i l e >
< f i l e ID =”md−f i l e −0003” MIMETYPE=” a p p l i c a t i o n / xml ” SIZE=”11174”

CHECKSUM=”1 c6eea66af562726641fda016405076b ” CHECKSUMTYPE=”MD5”>
<FLocat LOCTYPE=”URL” ns2 : type =” simple ”

ns2 : h re f =” metadata / imageConceptDetection . xml ”/>
</ f i l e >

</ f i l eG rp>
</ f i l eSec>
<structMap>

<d iv DMDID=”dmdSec 1”>
<d iv LABEL=”FILES”>

< f p t r ID =” f p t r −0001” FILEID =”cn−f i l e −0001”/>
< f p t r ID =” f p t r −0002” FILEID =”md−f i l e −0002”/>
< f p t r ID =” f p t r −0003” FILEID =”md−f i l e −0003”/>

</ d iv>
</ d iv>

</structMap>
</mets>

13. The ID Manager updates IDs associated to the content adding the AIP ID provided
by the Digital Repository (see Figure 23). For each content the resource URI
is mapped to the AIP ID and to other IDs, as explained in the following steps.

Figure 22: AIP preview: Dublin Core metadata, with identifier and provenance information.

14. The Packager component in the Preservation System stores the AIP into the
Cloud Storage Service using PDS REST APIs.

15. The ID Manager updates IDs associated to the content adding PDS ID provided
by the Cloud Storage Service.

16. The Cloud Storage Service triggers Storlets according to rules.

Page 50 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

Figure 23: Web interface of the PoF Middleware, the different IDs associated to the same
content are shown, as well as the preservation status.

17. The status of the resource is updated: resource is shown as preserved in the Ac-
tive System.

After the content has been successfully preserved, a workflow to restore one or more re-
sources can be triggered, as described below. This workflow can be triggered for different
reasons, e.g. in order to replace a corrupted or modified resource with the original one
stored in the Preservation System.

1. The Active System can send a request to PoF Middleware using the REST
APIs, in order to restore or update a resource locally.

2. A Resource Restore Worklow is triggered by the WorkflowManager, which creates
a new job, parsed by the Scheduler, which in turn creates the initial message and
sends it to the specific queue available on the messaging system.

3. The Collector, listening to a specific queue, retrieves the message and extracts
the relevant information (resource URI).

4. The ID Manager returns the AIP ID associated to the resource URI.

5. The Collector retrieves the DIP from the Preservation System, using the
REST APIs, The DIP contains the original resource (or a new one after transforma-
tion by PDS), which is returned to the Active System.

6. The user is notified after the resource is updated.

The workflows described above will be used as starting point for future more complex
workflows which will be implemented in the next releases of the framework.

c© ForgetIT Page 51 (of 61)

ForgetIT Deliverable 8.3

B DSpace Installation Guide

B.1 Introduction

Information about DSpace can be found on the project web site21. The role of DSpace
in the PoF Framework and the integration with the other components in the overall ar-
chitecture is described in deliverable D8.1 [ForgetIT 2013d]. Additional information can
be found in D7.2 [ForgetIT 2014e] (integration with cloud storage) and in D5.2 [ForgetIT
2014c] (synergetic preservation workflows). This guide is based on official DSpace docu-
mentation22, tailored to Ubuntu Server 12.04 LTS, with additional configuration information
for the PoF Framework. Other applications and libraries required to install and run DSpace
are Apache Maven23 and Apache Ant24 for compiling and building DSpace sources, Post-
greSQL25 as internal DB used by DSpace and Apache Tomcat26 for the runtime.

B.2 Installation procedure

The following instructions have been tested with DSpace 4.1. If you are using a different
version of DSpace, you should check the documentation available on DSpace web site.
In order to install DSpace using the following instructions, you need a basic installation of
Ubuntu Server 12.04 LTS. Please refer to Ubuntu documentation for the installation of the
operating system. You can use a physical or virtual machine for installing Ubuntu, as done
for example in the ForgetIT testbed. In the following we assume that you have installed
Ubuntu and that you have access to the machine using either the root user or any user
belonging to the sudo group. During the Ubuntu installation, it is advisable to include an
OpenSSH server as additional software, mainly if you are installing DSpace in a virtual
machine hosted by a remote server. Please note that in the instructions below, after the
creation of the DSpace user, you need to start DSpace and apply any modifications to the
DSpace configuration using this user only, who must also have writing permissions for all
the directories used by DSpace.

Configuration of Ubuntu

From within a terminal, update the Ubuntu installation and reboot the machine:
$ sudo apt−get update
$ sudo apt−get upgrade
$ sudo reboot now

21DSpace - http://www.dspace.org
22DSpace Guide - https://wiki.duraspace.org/display/DSDOC/All+Documentation
23Apache Maven - http://maven.apache.org
24Apache Ant - - http://ant.apache.org
25PostgreSQL - http://www.postgresql.org
26Apache Tomcat - http://tomcat.apache.org

Page 52 (of 61) www.forgetit-project.eu

http://www.dspace.org
https://wiki.duraspace.org/display/DSDOC/All+Documentation
http://maven.apache.org
http://ant.apache.org
http://www.postgresql.org
http://tomcat.apache.org

Deliverable 8.3 ForgetIT

Install the Java JDK 727 and Apache Maven with the following command:
$ sudo apt−get i n s t a l l openjdk−7−j dk maven

Check the Maven installation running:
$ mvn −vers ion

You should get an output similar to the following:
Apache Maven 3 .0 .4
Maven home : / usr / share / maven
Java vers ion : 1 .7 .0 51 , vendor : Oracle Corporat ion
Java home : / usr / l i b / jvm / java−7−openjdk−amd64
Defau l t l o c a l e : i t I T , p la t f o rm encoding : UTF−8
OS name : ” l i n u x ” , vers ion : ”3.8.0−35− gener ic ” , arch : ”amd64 ” ,
f a m i l y : ” un ix ”

Since Maven on Ubuntu server will add version 6 of Java Runtime Environment as addi-
tional dependency, configure JRE in order to use version 7 (for Java compiler and other
Java related utilities the used version should already be 7):

$ sudo update−a l t e r n a t i v e s −−con f i g java

and select version 7 when prompted (option 2 in the example below):
There are 2 choices f o r the a l t e r n a t i v e java (p rov id ing / usr / b in / java) .

Se lec t i on Path P r i o r i t y Status
−−−
∗ 0 / usr / l i b / jvm / java−6−openjdk−amd64 / j r e / b in / java 1061 auto mode

1 / usr / l i b / jvm / java−6−openjdk−amd64 / j r e / b in / java 1061 manual mode
2 / usr / l i b / jvm / java−7−openjdk−amd64 / j r e / b in / java 1051 manual mode

Press enter to keep the cu r ren t choice [∗] , or type s e l e c t i o n number : 2

Install Apache Web Server, including the proxy module (Apache WS will act as a proxy
to forward the requests to the DSpace web applications running on Tomcat, while static
content, such URLs for published AIP files, will be managed by Apache WS itself):

$ sudo apt−get i n s t a l l apache2 l ibapache2−mod−proxy−html
l ibxml2−dev

Install libraries for file compression (zip, p7zip-full, p7zip-rar): some of the previous li-
braries are not mandatory, but can be useful for testing DSpace locally, e.g. creating zip
files for the SIP or to open exported AIPs.

Install tools for CIFS, to mount storage folder on external devices (e.g. NAS). NFS or
iSCSI could be used, too.

$ sudo apt−get i n s t a l l c i f s−t o o l s

The automatic creation of new mount points must be added to /etc/fstab file, depend-
ing on your configuration.

27Open JDK - http://openjdk.java.net

c© ForgetIT Page 53 (of 61)

http://openjdk.java.net

ForgetIT Deliverable 8.3

Create “dspace” user

Create a new Linux user named dspace (with password dspace) and add it to the sudo-
ers group with the following commands:

$ sudo adduser dspace
$ sudo adduser dspace sudo

From now on, switch to DSpace user dspace: you can either logout and then login again
with user dspace or simply use the following command as root:

$ su dspace

Install and configure PostgreSQL 9.1

DSpace currently supports PostgreSQL and Oracle DB. PostgreSQL is the default choice
and no additional drivers or adapters have to be added. Instructions below refer to the
default installation with PostgreSQL. If you want to use Oracle DB please refer to the
documentation available in the official DSpace documentation.

Install PostgreSQL and check the installation with the following commands:
$ sudo apt−get i n s t a l l pos tgresq l −9.1
$ psql − vers ion

Edit PostgreSQL configuration files as described below:

• postgresql.conf in /etc/prostgresql/9.1/main/ : uncomment the line containing: lis-
ten addresses = ’localhost’ and edit the line to listen on all addresses, listen ad-
dresses = ’*’

• pg hba.conf in /etc/prostgresql/9.1/main/ : add the lines host dspace dspace 127.0.0.1
255.255.255.255 md5 and host all all 127.0.0.1/24 trust.

Restart PostgreSQL:
$ sudo serv i ce pos tg resq l r e s t a r t

Switch to user root and then switch to user postgres:
$ sudo su −
$ su postgres

Create a new user for PostgreSQL, with username dspace and password dspace (this
user is different from the one created on Ubuntu and can be changed in the DSpace
configuration):

$ createuser −U postgres −d −A −P dspace

Page 54 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

Create a new PostgreSQL DB schema, named dspace, owned by the dspace Post-
greSQL user created above:

$ createdb −−owner=dspace −−encoding=UNICODE dspace

Switch back to Ubuntu user dspace issuing twice the shell command exit.

Create a folder for copying source files of the required applications and for setup. The
suggested configuration is to create a folder under /opt and to assign ownership to
dspace user, as shown below:

$ sudo mkdir / opt / f o r g e t i t
$ sudo chown −R dspace : dspace / opt / f o r g e t i t
$ mkdir / opt / f o r g e t i t / a p p l i c a t i o n s
$ mkdir / opt / f o r g e t i t / setup

Install Apache Tomcat 7

Install Apache Tomcat 7 as user dspace created in the previous section. Download
Tomcat 7, e.g. using the following command (check the link for the current version):

$ cd / opt / f o r g e t i t / a p p l i c a t i o n s
$ wget −O apache−tomcat −7.0.52. t a r . gz

h t t p : / / apache . panu . i t / tomcat / tomcat−7/v7 . 0 . 5 2 / b in / apache−tomcat
−7.0.52. t a r . gz

or copy the .tar.gz file downloaded with another machine using scp command (you need
an OpenSSH server running, see instructions above).

Uncompress the Tomcat tar.gz file into directory /opt/forgetit/tomcat7 (in the fol-
lowing this directory will be referred to as [Tomcat Install Dir]) :

$ t a r −xzv f apache−tomcat −7.0.52. t a r . gz −C / opt / f o r g e t i t
$ mv apache−tomcat−7.0.52 tomcat7

Instructions to configure a service for Tomcat to start at boot are provided in the last
section. Edit the Tomcat 7 configuration as described below:

• create file setenv.sh in [Tomcat Install Dir]/bin and set JAVA OPTS=”-Xmx512M -
Xms64M -XX:MaxPermSize=256M -Dfile.encoding=UTF-8”

• Edit file server.xml in [Tomcat Install Dir]/conf adding a configuration option to the
Connector element: URIEncoding=”UTF-8”

Install DSpace 4.1

Download DSpace 4.1 from DSpace web site, e.g. using the following command (check
the link for the current version):

c© ForgetIT Page 55 (of 61)

ForgetIT Deliverable 8.3

$ cd / opt / f o r g e t i t / a p p l i c a t i o n s
$ wget −O dspace−4.1−src−re lease . t a r . gz h t t p : / / sourceforge . net /

p r o j e c t s / dspace / f i l e s / DSpace\%20Stable / 4 . 1 / dspace−4.1−src−
re lease . t a r . gz / download

As dspace user unpack the DSpace tar.gz file. The extracted folder (e.g. dspace-
4.1-src-release) will be referenced to as [dspace-source] in the following. Cre-
ate a directory to install DSpace, e.g. /opt/forgetit/dspace-4.1, referred to as
([dspace-install]):

$ cd / opt / f o r g e t i t / a p p l i c a t i o n s
$ t a r −xzv f dspace−4.1−src−re lease . t a r . gz
$ mkdir / opt / f o r g e t i t /\emph{ [dspace− i n s t a l l]}
$ cd / opt / f o r g e t i t / a p p l i c a t i o n s /\emph{ [dspace−source]

Configure file build.properties, editing the following properties:

• dspace.install.dir pointing to [dspace-install]

• dspace.hostname = [HOSTNAME] (set it to the hostname chosen during the in-
stallation, e.g. archive. Compare with hostname in file /etc/hosts or with envi-
ronment variable HOSTNAME)

• dspace.baseUrl = http://[HOSTNAME]:8080

• dspace.name = DSpace for Preserve-or-Forget Framework (or any other name
which is meaningful for you)

• mail.server = YOUR MAIL SERVER

• mail.from.address = dspace-admin@forgetit-project.eu (or change ac-
cording to your configuration)

• mail.feedback.recipient = CONTACT USER EMAIL

• mail.admin = DSPACE ADMIN EMAIL

• uncomment the line handle.canonical.prefix = $dspace.url/handle/ and
comment the line handle.canonical.prefix = http://hdl.handle.net/,
unless you want to subscribe to the handle service by CNRI

• handle.prefix = ANY VALUE (use official prefix from handle service if available)

All properties above but the installation directory can be modified later, editing file dspace.cfg

Compile using Maven and install using Ant, with the following commands:
$ cd [dspace−source]
$ mvn package
$ cd [dspace−source] / dspace / t a r g e t / dspace−[ve rs ion]− b u i l d
$ ant f r e s h i n s t a l l

Page 56 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

DSpace is installed in the specified directory [dspace-install].

Create an admin account for DSpace:
$ cd [dspace− i n s t a l l]
$. / b in / dspace create−a d m i n i s t r a t o r

Deploy the created web applications (copy [dspace-install]/webapps content or
create symlinks for all DSpace web applications in Tomcat webapps folder).

Start Tomcat 7 as dspace user (see Tomcat documentation for starting and stopping the
server) and check the DSpace installation. Verify that DSpace is up and running at the
following URLs (change archive.forgetit-project.eu with correct host):

• check DB connection with command: $./bin/dspace test-database

• check email settings: $./bin/dspace test-email

• http://archive.forgetit-project.eu:8080/jspui (JSP-based interface)

• http://archive.forgetit-project.eu:8080/xmlui (XML-based interface)

• sign in with administrator account created above on DSpace web interface

• try to create collections, new items, etc. (see instructions for Getting Started on
DSpace web site)

To customize the home page of the XMLUI interface, edit file /opt/forgetit/dspace-
4.1/config/news-xmlui.xml.

Optional configuration for Apache Web Server and Apache Tomcat

Apache WS can be configured to act as a reverse proxy for Tomcat (requests to DSpace
are proxied by Apache WS and viceversa). Static content (e.g. AIP files exported from
DSpace) is served by Apache WS.

Check that the proxy module is installed (see section about Ubuntu environment configu-
ration) and enabled. Use command sudo a2enmod proxy http and restart with sudo
service apache2 restart).

Add the following directives to file /etc/apache2/sites-available/default, for
each one of the applications in webapps to be proxied:

ProxyPass / xmlu i h t t p : / / a rch ive :8080/ xmlu i
ProxyPassReverse / xmlu i h t t p : / / a rch ive :8080/ xmlu i

According to the example above, the new URL of DSpace XML interface will be http:
//archive/xmlui.

Tomcat 7 can be configured to start at boot. Paste the example script below to a text file
tomcat7 and copy it to /etc/init.d, then execute command:

c© ForgetIT Page 57 (of 61)

http://archive.forgetit-project.eu:8080/jspui
http://archive.forgetit-project.eu:8080/xmlui
http://archive/xmlui
http://archive/xmlui

ForgetIT Deliverable 8.3

$ update−rc . d <nomescript> d e f a u l t s

The script must be executable (use chmod command: $ sudo chmod ugo+rx tom-
cat7). Note that in the provided example Tomcat is run as user dspace.
#! / b in / sh

BEGIN INIT INFO
Provides : Tomcat7
Required−S t a r t : $remote fs $syslog
Required−Stop : $remote fs $syslog
Defau l t−S t a r t : 2 3 4 5
Defau l t−Stop :
Short−Desc r i p t i on : Tomcat7
END INIT INFO

set −e
. / l i b / l sb / i n i t −f u nc t i o ns
TOMCAT HOME=/ opt / tomcat7
TOMCAT USER=dspace

case ” $1 ” i n
s t a r t)

log daemon msg ” S t a r t i n g Tomcat7 ”
su − $TOMCAT USER −c ”$TOMCAT HOME/ b in / s t a r t u p . sh > / dev / n u l l ”
log end msg 0
; ;

stop)
log daemon msg ” Stopping Tomcat7 ”
su − $TOMCAT USER −c ”$TOMCAT HOME/ b in / shutdown . sh > / dev / n u l l ”
log end msg 0
; ;

re load | force−re load)
; ;

r e s t a r t)
; ;

∗)
log ac t ion msg ” Usage : / e tc / i n i t . d / tomcat7 { s t a r t | stop | re load | force−
re load | r e s t a r t | t r y−r e s t a r t | s ta tus } ” | | t r ue
e x i t 1

esac

e x i t 0

Page 58 (of 61) www.forgetit-project.eu

Deliverable 8.3 ForgetIT

C Message Oriented Middleware

C.1 Apache ActiveMQ

A brief introduction

Apache ActiveMQ28 is an open source message broker written in Java, including a full-
fledged JMS client. It provides “Enterprise Features” which in this case means fostering
the communication from more than one client or server. Supported clients include the ob-
vious Java via JMS 1.1 as well as several other “cross language” clients. The communica-
tion is managed with features such as computer clustering and ability to use any database
as a JMS persistence provider besides virtual memory, cache, and journal persistence.
The following guide explains how to install and run ActiveMQ and how to correctly deploy
it into Apache Tomcat 7. The following instructions have been tested on Mac OS X 10.9.2
and Ubuntu 12.04 LTS.

Download and installation

First download the tar archive corresponding to the desired version from ActiveMQ web
site, extract it into a folder of your choice and then change the permission of the start-up
script. You can move the tar file into your folder ([activemq install dir]) and run
the following command from the terminal:

$ t a r −xvz f apache−activemq−5.9.0−bin . t a r . gz
$ cd [a c t i v e m q i n s t a l l d i r] / b in
$ chmod 755 activemq

Switch to folder [activemq install dir] and run ActiveMQ using the following
commands:

$ cd [a c t i v e m q i n s t a l l d i r] / b in
$. / activemq s t a r t

You can now go to http://localhost:8161/admin to check the status of ActiveMQ.
If ActiveMQ is ok you should see a page similar to Figure 24.

Run the following command from the terminal to stop ActiveMQ:
$. / activemq stop

Deployment into Tomcat 7

After installing ActiveMQ, it is possible to download the web console and deploy it into the
webapps folder of Tomcat 7. Choose an ActiveMQ version from URL http://repo1.

28Apache ActiveMQ - http://activemq.apache.org

c© ForgetIT Page 59 (of 61)

http://localhost:8161/admin
http://repo1.maven.org/maven2/org/apache/activemq/activemq-web-console/
http://repo1.maven.org/maven2/org/apache/activemq/activemq-web-console/
http://activemq.apache.org
http://repo1.maven.org/maven2/org/apache/activemq/activemq-web-console/

ForgetIT Deliverable 8.3

Figure 24: ActiveMQ web-console homepage

maven.org/maven2/org/apache/activemq/activemq-web-console/ and down-
load the corresponding .war file (for example: activemq-web-console-5.9.0.war).
You should also download the appropriate .jar (for example: activemq-all-5.9.0.jar).
Copy the .war file into [TOMCAT HOME]/webapps folder and the .jar file into [TOM-
CAT HOME]/lib folder.

Now you can start Tomcat 7 with the following command and wait for the correct deploy-
ment of the web applications:

$ [TOMCAT HOME] / b in / s t a r t u p . sh

If the ActiveMQ web console was successfully deployed, you should see a message sim-
ilar to the following:

I n fo rmaz ion i : Deploying web a p p l i c a t i o n arch ive / usr / l o c a l
/ apache−tomcat −7.0.50/webapps / activemq−web−console −5.9.0. war
. . .
PL is tS to re : [/ usr / l o c a l / apache−tomcat −7.0.50/ activemq−data /
web−console / tmp storage] s t a r t e d
Using Pers is tence Adapter : KahaDBPersistenceAdapter [/ usr /
l o c a l / apache−tomcat −7.0.50/${activemq . data } / kahadb]
JMX consoles can connect to se rv i ce : jmx : rmi : / / / j n d i / rmi : / /
l o c a l h o s t :1099/ jmxrmi
Apache ActiveMQ 5.9 .0 (web−console , ID : MacBook−Pro−di−Jacopo .
l oca l −49790−1392715784927−0:1) i s s t a r t i n g
L i s t e n i ng f o r connect ions a t : tcp : / / l o c a l h o s t :61616
Connector openwire s t a r t e d
L i s t e n i ng f o r connect ions a t : stomp : / / l o c a l h o s t :61613
Connector stomp s t a r t e d
Apache ActiveMQ 5.9 .0 (web−console , ID : MacBook−Pro−di−Jacopo .
l oca l −49790−1392715784927−0:1) s t a r t e d
For help or more in fo rma t i on please see : h t t p : / / activemq .
apache . org
. . .

Finally open the ActiveMQ web console from the Tomcat manager as shown in Figure 25.

Page 60 (of 61) www.forgetit-project.eu

http://repo1.maven.org/maven2/org/apache/activemq/activemq-web-console/
http://repo1.maven.org/maven2/org/apache/activemq/activemq-web-console/

Deliverable 8.3 ForgetIT

Figure 25: Tomcat 7 manager

C.2 Apache Camel

Apache Camel29 is a rule-based routing and mediation engine that provides a Java object-
based implementation of the Enterprise Integration Patterns (EIP) using an API (or declar-
ative Java Domain Specific Language) to configure routing and mediation rules. The main
role of Apache Camel in the PoF Framework implementation is to provide a flexible rule
engine to implement workflows executed within the PoF Middleware, leveraging the mes-
saging system provided by Apache ActiveMQ.

Apache Camel has not been included yet in the first prototype implementation, but it is
mentioned here because it is part of the same Apache ServiceMix30 suite and will be used
for the second PoF Framework release, where additional and more complex workflows will
be defined. The main advantage of using Apache Camel here is that it can be integrated
seamlessly with the MOM infrastructure.

The documentation and real examples based on Apache Camel can be found on the
Apache Camel web site.

29Apache Camel - http://camel.apache.org
30Apache ServiceMix - http://servicemix.apache.org

c© ForgetIT Page 61 (of 61)

http://camel.apache.org
http://servicemix.apache.org

	Table of Contents
	Executive Summary
	Introduction
	Assessment of WP8 indicators
	Preserve-or-Forget Framework
	PoF Middleware Implementation
	Message Oriented Middleware
	Technologies for PoF Middleware
	PoF Middleware APIs

	PoF Middleware Integrated Components
	ID Manager
	Scheduler
	Forgettor
	Extractor
	Contextualizer
	Collector/Archiver

	Active Systems
	Semantic Desktop
	TYPO3

	Preservation System
	Digital Repository: DSpace
	Cloud Storage: PDS and Storlet Engine

	First Prototype Implementation
	Software Development, Deployment and Testing
	Source Code Documentation, Availability and License

	Summary and Future Work
	Glossary
	References
	Demo of the first prototype
	DSpace Installation Guide
	Introduction
	Installation procedure

	Message Oriented Middleware
	Apache ActiveMQ
	Apache Camel

