
www.forgetit-project.eu

ForgetIT
Concise Preservation by Combining Managed Forgetting

and Contextualized Remembering

Grant Agreement No. 600826

Deliverable D8.1

Work-package WP8: PoF Reference Model and Framework
Deliverable D8.1: Integration Plan and Architectural Approach
Deliverable Leader Francesco Gallo (EURIX)
Quality Assessor Heiko Maus (DFKI)
Estimation of PM spent 9
Dissemination level PU
Delivery date in Annex I 31. October 2013 (M9)
Actual delivery date 6. December 2013
Revisions 7
Status Final
Keywords: Preserve-or-Forget Architecture, Reference Model,

Framework, Integration

ForgetIT Deliverable D8.1

Disclaimer

This document contains material, which is under copyright of individual or several ForgetIT
consortium parties, and no copying or distributing, in any form or by any means, is allowed
without the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consor-
tium warrant that the information contained in this document is suitable for use, nor that
the use of the information is free from risk, and accepts no liability for loss or damage
suffered by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for
any use that may be made of the information contained herein.

c© 2013 Participants in the ForgetIT Project

Page 2 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

List of Authors

Partner Acronym Authors
LUH Claudia Niederée
LUH Kaweh Djafari-Naini
LTU Ingemar Andersson
LTU Parvaneh Afrasiabi Rad
LTU Göran Lindqvist
LTU Jörgen Nilsson
IBM Simona Rabinovici-Cohen
IBM Ealan Henis
DFKI Heiko Maus
DFKI Frank Steinmann

CERTH Vasileios Mezaris
CERTH Olga Papadopoulou
CERTH Vasilis Solachidis

dkd Olivier Dobberkau
dkd Phuong Doan

EURIX Walter Allasia
EURIX Francesco Gallo

Page 3 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Page 4 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Contents

List of Authors 3

Contents 5

Executive Summary 7

1 Introduction 9

2 ForgetIT Architecture 11

2.1 Active Systems . 13

2.2 Middleware for synergetic preservation, managed forgetting and contextu-
alized remembering . 13

2.3 Archive . 13

2.4 Cloud Storage Services . 14

3 Architecture Components 15

3.1 Active Systems . 15

3.2 Shared Components of the PoF Middleware 18

3.3 Middleware components supporting core ForgetIT functionality 21

3.4 OAIS Platform and Cloud Storage . 28

4 Architecture Diagrams and Integrated Workflows 31

4.1 Structure Diagrams . 31

4.2 Integrated Workflows . 33

4.2.1 Workflow 1: Basic Synergetic Preservation 34

4.2.2 Workflow 2: Basic Managed Forgetting Support 36

5 OAIS solutions 38

5.1 Assessment criteria . 38

5.2 Candidate platforms . 39

Page 5 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

5.3 Other solutions, projects and initiatives . 53

5.4 Selection of the OAIS platform . 53

6 Middleware Solutions 55

7 Integration Plan 58

7.1 Plan for the first ForgetIT release . 58

7.2 Preliminary plan for the other releases . 58

8 Test Environment 59

9 Conclusions and future work 61

References 63

Page 6 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Executive summary

The primary objectives of WP8 are (a) to devise a reference model which comprises
the concepts and processes for managed forgetting, contextualized remembering and
for integrated information and preservation management (synergetic preservation) and
(b) based on this reference model to integrate the components, which implement these
concepts, into a technologically coherent framework, the Preserve-or-Forget (PoFPoF)
framework.

This document describes the architecture of the PoF framework with its main compo-
nents. The components developed by the technical WPs (WP3-WP7) are integrated into
the framework. In this deliverable we also describe the integration plan for testing and
validating the project results. The work presented in this document are the results of Task
8.1.

Making use of Model Driven Architecture (MDA) approach (and UML notation), under the
lead of EURIX, all technical partners have worked together to establish and document
a first version of the functional specifications of the ForgetIT architecture and the corre-
sponding integration guidelines for the different components.

The architecture defined in the present document will be improved in an iterative ap-
proach, to be refined and extended during the project when new results and insight will
become available for integration and testing. In this deliverable we also included a prelim-
inary evaluation of platforms and other candidate solutions for the implementation of the
building blocks in the architecture.

The defined architecture includes two active systems (the Semantic Desktop and TYPO3,
see WP9 and WP10, respectively), an Archive compliant to OAIS model, a PoF Middle-
ware providing the bridge between the active systems and the Archive and finally a Cloud
Storage Service with a Storlet engine for executing specific tasks close to the data. The
Archive and the Middleware will exploit existing solutions wherever possible, which will
be adapted and customized within WP8. Furthermore, the PoF Middleware will integrate
components developed by WP3-WP6, which implement the core ForgetIT functionality.
The cloud storage system will be developed in WP7.

Page 7 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Page 8 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

1 Introduction

The first objective of WP 8 is to define - in collaboration with the other technical WPs
as well as with the interdisciplinary components from WP2 - a reference model which
comprises the concepts and processes for managed forgetting, contextualized remem-
bering and synergetic preservation. As support for this reference model, the second
objective is to integrate the components developed in the project into a technologically
coherent framework which can be used to implement the Preserve-or-Forget (PoF) Ref-
erence Model. The overall approach will be based on flexible and extensible solutions
making use of the most appropriate technologies concerning protocols, metadata and
formats.

This document describes the architecture of the Preserve-or-Forget (PoF) framework with
its main components providing a high level description of each module, showing relevant
interfaces and protocols used for communication among them. The components devel-
oped by the technical WPs will be integrated into this framework. In this deliverable we
also describe the integration plan for testing and validating the project results.

The present document is the result of the activity performed in Task 8.1 - Integration plan
and ForgetIT architecture, whose main objective is to ensure that (1) the components
developed in WP3-WP7 work together and that (2) the conceptual architecture for the
PoF framework will be specified, including component responsibilities, interface definitions
and the foreseen interplay between components. Task 8.1 also targets the plan for the
integration of software components into the ForgetIT architecture.

The defined architecture includes two active systems (the Semantic Desktop and TYPO3),
an Archive compliant to OAIS model, a PoF Middleware implementing the ForgetIT intel-
ligent preservation solution and providing the bridge between the active systems and the
Archive and finally a Cloud Storage Service with a Storlet engine for executing specific
tasks close to the data.

Wherever possible, the Archive and the Middleware will rely on existing solutions, which
will be adapted and customized within WP8. The PoF Middleware will integrate com-
ponents developed by WP3-WP6 for realizing the novel ForgetIT methods. The cloud
storage system will be developed in WP7.

The architecture defined in the present document will be improved in an iterative approach
during the project.

Previous deliverables provide an input to the present document. In particular, D3.1 [1] dis-
cusses the importance of managed forgetting and provides useful guidelines for the PoF
platform. Other deliverables, such as D4.1 [2], D5.1 [3], D6.1 [4] and D7.1 [5], describe
the foundations and the state of the art for relevant topics such as information extraction,
synergetic preservation, contextualization and computational storage services.

Based on the results provided by these documents, several components will be developed
during the project lifetime: this document provides information about how such component

Page 9 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

will work together in an integrated environment.

Finally, D9.1 [6] introduces the two main application use cases and scenarios, which have
been taken into account when designing the architecture. Two simplified scenarios based
on D9.1 will be discussed: they will be used as first demonstration of early integration.

This document, on the other hand, will provide input to future deliverables, including not
only WP8 deliverables related to the Reference Model or the different platform releases,
but also for example D3.2, D4.2 and D6.2, which will present the first prototypes of the
components.

Another relevant deliverable will be D5.2 [7], where a workflow model for transition be-
tween active systems and the archive will be discussed: this document will be based on
the architecture described here and will provide an input to the future deliverables about
the PoF platform.

The document is organized as follows: in Section 2 we provide an overview of the overall
architecture, with the main components; in Section 3 we provide a detailed description of
the components which will be developed in the project and integrated in the PoF Frame-
work; in Section 4.1, making use of UML2 notation, the structural representation of the
architecture is presented, as well as two priority workflows for the initial integration activi-
ties for the PoF framework; in Section 5 we describe different solutions compliant to OAIS
which are possible candidates for the implementation of the Archive in our architecture; in
Section 6 a preliminary overview of candidate technologies for the middleware is provided;
in Section 7 we discuss the integration plan for the different releases of the platform; in
Section 8 we describe the test environment which will be used to develop and test the
integrated components and systems of the platform; finally we provide a Glossary with a
list of acronyms and abbreviations used in the document, referring to special terms in the
field of digital preservation and other technologies used and developed in the project.

Page 10 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

2 ForgetIT Architecture

The architecture of the PoF framework is the first outcome of WP8. The main purpose was
to design a system to integrate all components developed in the project into a technolog-
ically coherent framework which could be used to implement the PoF Reference Model.
In order to achieve this, the expected results of each technical WP have been evaluated
and a collaborative approach has been adopted to design the overall architecture. The
method used to design the architecture is based on MDA and makes use of UML2 as the
standard modelling language for designing the architecture since the preliminary sketches
to the final representation, using an iterative approach.

The ForgetIT architecture is made up of four main layers, which are shortly described in
the following Sections. The first layer includes the active systems, namely the Semantic
Desktop (see WP9) and the TYPO3 CMS (see WP10). These two applications are related
to the main scenarios, as already described in D9.1 [6]. The second layer is provided by
what we call the PoF Middleware (Preserve-or-Forget) Middleware, whose main purpose
is to enable seamless transition from active systems to the Archive (and vice versa) and to
provide the necessary functionality for supporting managed forgetting and contextualized
remembering. The middleware will integrate components developed in WP3, WP4, WP5,
and WP6, which implement the ForgetIT functionalities. The third layer is made up of
the Archive, which is an OAIS compliant platform responsible for the digital preservation
of the contents created by the applications and implements the backbone for synergetic
preservation. The Archive provides ingest and access functionalities, as well as data
management for the archived content, data curation for actual preservation and content
storage. The development and integration of the Archive is under the responsibility of
WP8. The fourth layer corresponds to the cloud storage, which will be the main outcome
of WP7. The approach adopted in ForgetIT to implement the Archival Storage functionality
will make use of an advanced solution for cloud storage powered by a mechanism to
execute resource consuming tasks close to the data.

The components are discussed in the next Sections. The information reported for all
architecture blocks demonstrates that all technical WPs will contribute to the integrated
platform and that the designed architecture can accommodate all components in a coher-
ent way. The integration mechanism when moving from one layer to the other has been
identified (the expected interfaces and protocols have been selected, in some cases they
are also available, for other components the work is still in progress).

An overview of the PoF architecture is depicted in Figure 1, which provides a graphical
representation of the main components with some descriptive information (components
developed during the project are shown in green, components shown in blue or cyan
belong to existing platforms which will be further developed and customized to fit with
project purposes and for integration in the overall architecture). The UML diagrams of the
architecture can be found in Section 4.1.

Page 11 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Fi
gu

re
1:

O
ve

rv
ie

w
of

Po
F

ar
ch

ite
ct

ur
e

(g
re

en
:

co
m

po
ne

nt
s

de
ve

lo
pe

d
du

ri
ng

th
e

pr
oj

ec
t;

bl
ue

:
ex

is
tin

g
co

m
po

ne
nt

s
to

be
im

pr
ov

ed
an

d
cu

st
om

iz
ed

.)

Page 12 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

2.1 Active Systems

The PoF architecture includes two user applications which are used to validate the main
scenarios. One is a personal preservation application based on the Semantic Desktop,
developed in WP9 and the other one is an organizational preservation application based
on the TYPO3 CMS, developed in WP10 (see D9.1 [6]). Both systems are complex and
include several components, but the inner details are not discussed here (see deliver-
ables D9.2 and D10.1 for details). Two example workflows involving the two applications
as well as functionalities of other ForgetIT components are described in Section 4.2. Con-
cerning the interfaces and the integration with the other architecture components, the two
applications will make use of the REST APIs provided by the middleware to notify the
system about content to be preserved and to retrieve updated content. Both compo-
nents will expose a CMIS [8] interface to allow the middleware components to retrieve
the content. The communication with the middleware is provided by application specific
adapters, which encapsulate application-specific extensions for interacting with the PoF
Middleware. The separation of functionalities that will be part of the Middelware and func-
tionality, which will become part of the active systems is a challenging task. The details
of this separation are still under discussion.

2.2 Middleware for synergetic preservation, managed forgetting and
contextualized remembering

The main purpose of the middleware is to enable the three main principles of ForgetIT,
namely a seamless transition from active systems to the archive (Synergetic Preserva-
tion), a meaningful transition back to the active system (Contextualized Remembering)
as well as Managed Forgetting. The middleware includes a number of components for
feature extraction, contextualization, condensation and managed forgetting. Other com-
ponents are related to common tasks and are associated to the middleware bus. Exam-
ples are the scheduler and the ID manager. The integration of all the components into
the middleware supporting the project scenarios will be the main challenge for the future
integration activities in WP8. The middleware will expose REST APIs to be consumed
by the applications and will include a CMIS client to retrieve content. Furthermore, the
middleware includes components for importing and exporting content into and from the
archive. The middleware will be able to properly package the content and associated
metadata into a format which is compliant to what is expected by the archive.

2.3 Archive

The Archive implements the OAIS model [9], which is widely accepted as the reference
standard for implementing digital preservation platforms. The Archive exposes different
APIs for ingest and access, depending on the actual implementation. In addition to defin-
ing the parties involved in the long-term preservation of digital materials, OAIS provides

Page 13 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

an information model for managing the digital materials as they pass through the system.
A significant component of this model is the Information Package (IP). Each IP consists
of the digital object(s) to be preserved, the metadata required at that point in the system
and the Packaging Information which relates content and metadata (see [9]). OAIS out-
lines three types of Information Package: Submission Information Package (SIP), Archival
Information Packages (AIP) and Dissemination Information Package (DIP). SIP and DIP
are external to the archive and refer to the producer and consumer, respectively. AIP is
internal to the archive. In ForgetIT, the active systems (via the PoF Middleware) act both
as producers and as consumers. It is common practice to adopt the same representation
for SIP, AIP, and DIP (e.g. several platforms use METS as XML wrapper for the three
of them, but this is not mandatory). The OAIS functional model is depicted in Figure 2.
For this architecture layer it is planned to rely on existing solutions. A list of candidate
solutions is discussed in Section 5. The Archive must support the ForgetIT Reference
Model and is responsible for the actual digital content curation. In the specific context of
ForgetIT project, one of the OAIS functional entities, the Archival Storage, is implemented
by a Cloud Storage Service.

Figure 2: OAIS functional entities [9].

2.4 Cloud Storage Services

The cloud storage service integrated in the ForgetIT platform is based on Preservation
DataStores (PDS) and OpenStack Swift, discussed in deliverable D7.1 [5], provides stor-
age resources for AIPs but also a Storlet engine for executing specific operations close
to the data, i.e. future processing steps can be done in the archive without requiring to
extract it to a server and put it back into the archive. These tasks can include different con-
tent transformations, such as format migration, other resource consuming tasks, such as
integrity checks as well as operations for enabling managed forgetting within the archive
and operations for supporting context evolution for archived content.

Page 14 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

3 Architecture Components

In this Section we describe the components which are part of the overall architecture,
split into four main blocks (middleware, active systems, OAIS archive, cloud storage).
The main components in the PoF platform are shown in Figure 1 and Figure 4. The
middleware components are divided into (a) shared components (performing common
tasks and managed through the middleware bus) and (b) components implementing the
core ForgetIT functionalities, described in Section 3.2 and Section 3.3, respectively. For
each component a fact sheet is provided, describing main functionalities and reporting
information which is relevant for the integration.

3.1 Active Systems

The components related to the active systems are part of the current implementation
of TYPO3 and Semantic Desktop together with the application-specific adapters. Only
components relevant to the integration are considered in this deliverable. TYPO3 and
the Semantic Desktop are described in more detail in deliverable D9.1 [6]. The main
features of the two systems, in the context of their integration in the overall architecture
are summarized in Table 1 and Table 2.

Page 15 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Semantic Desktop Infrastructure
Partner Responsible DFKI
Contributing Partners
Work Packages WP9 (WP3,WP4,WP5,WP8)
Reference Deliver-
ables

D9.2, D9.3, D9.4

Current Status Prototype available
Short description and
role

The Semantic Desktop is a personal information management system with an
underlying ontology semantically describing the user’s mental model and the re-
sources involved. This ontology is the PIMO (Personal Information Model). The
Semantic Desktop infrastructure consist of a PIMO Server with a dedicated API
so that any third party could use the PIMO for own purposes (e.g., using it as
tagging vocabulary). In addition, a combination of plug-ins for (some) standard
applications as well as dedicated components/UI for specific purposes (such as
task management, photo collection) is provided. In ForgetIT the Semantic Desk-
top serves as a means to learn about user’s resources, their usage over time,
importance, interrelations, and context for each resource from the PIMO. Once
the ForgetIT services are combined with the Semantic Desktop infrastructure,
synergetic preservation is realized with nearly no additional effort. The PIMO
will also provide context information for realizing contextual remembering as well
as means for contributing to managed forgetting. The infrastructure will be en-
hanced with several ForgetIT services such as image quality assessment or text
condensation.

Delivery Mode Platform running in application server on dedicated machine
Subcomponents PIMO Server, PIMO desktop clients, specific plug-ins for applications, HTML5

mobile client, User Observation Hub (UOH)
Main APIs, input and
output formats

PIMO API (JSON RPC)

Plan for integration at
M18

Platform connected to PoF Middleware; initial workflows are served

Plan for integration at
M27/M36

Iterative enhancement of interplay with PoF Middleware; concise preserving
desktop client M27; concise preserving mobile client M36

Language, runtime
framework

server: Java, JSP, Apache Tomcat, MySQL; desktop: Java, HTML5 (JavaScript,
CSS); mobile: HTML5

SW and HW Re-
quirements

can be deployed on a VM

Dataset for testing Stainer data set; 24/7 instance at DFKI (live usage); test instance for ForgetIT;
cloning of PIMOs possible

License a BSD-compliant license for interfaces and PIMO model; implementation free
use in ForgetIT

Notes The prototype and some documentation can be found at https://pimo.kl.
dfki.de/

Table 1: Semantic Desktop (Active System, WP9 Component)

Page 16 (of 65) www.forgetit-project.eu

https://pimo.kl.dfki.de/
https://pimo.kl.dfki.de/

ForgetIT Deliverable D8.1

Component Name TYPO3
Partner Responsible dkd
Contributing Partners
Work Package WP10
Reference Deliver-
ables

D5.1, D9.1, D10.1, D10.2, D10.3

Current Status Design of Pilot Applications; Evaluation of Standards to be used
Short description and
role

TYPO3 is an enterprise-class, Open Source CMS (Content Management Sys-
tem), used internationally to build and manage websites of all types, from small
sites for non-profits to multilingual enterprise solutions for large corporations.
TYPO3 is a user-friendly, intuitive tool for producing and maintaining web pages
with just a few clicks of the mouse. Authors benefit from the full-featured rich-
text editor that offers all of the formatting options they would need in a WYSIWYG
(What You See Is What You Get) tool with a familiar word processor-like interface.
Seamless integration of multimedia content and dynamic image manipulation are
available right out of the box in TYPO3. In addition, an internal messaging and
workflow system helps content creators and editors to collaborate in the admin-
istration backend. TYPO3 provides an extremely detailed permissions system
for implementing professional editing workflows for both users and groups. Ad-
ministrators can even manage multiple websites in one TYPO3 installation and
share users, extensions, and content between them. Source code available on
project repository [10]

Delivery Mode Release in an agile approach
Subcomponents CMIS, semantic annotations, ForgetIT TYPO3 Extensions (Content dashboard,

Metadata directory, Semantic layer, Forget-IT module, Feedback and conflicts
module, Recycle and inducing module, CMIS)

Main APIs, input and
output formats

CMIS, REST, OWL

Plan for integration at
M18

Application connected to PoF Middleware; initial workflows are served; See also
evaluation plan

Plan for integration at
M27/M36

Release of the pilot application with the ForgetIT TYPO3 Extensions and the
integrated component ens (CMIS Client / Server and Semantic Services)

Language, runtime
framework

TYPO3 CMS 6.2 LTS

SW and HW Re-
quirements

Requirements for SW and HW are available in the project documentation
(http://typo3.org/about/typo3-the-cms/system-requirements)

Dataset for testing (1) Approved Spielwarenmesse press release (2) Testbed including multi do-
mains in TYPO3 (3) Any other press releases and content consisting of text and
media assets created in Testbed

License GPL

Table 2: TYPO3 CMS (Active System, WP10 Component)

Page 17 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

3.2 Shared Components of the PoF Middleware

The components listed below are integrated in the PoF Middleware. Shared components
(managed by the Middleware bus) are responsible for general tasks.

Component Name Metadata Repository
Partner Responsible EURIX
Contributing Partners L3S, USFD, CERTH, LTU
Work Packages WP8, WP3, WP4, WP6, WP5
Reference Deliver-
ables

D8.2

Current Status Started component design
Short description and
role

Component that manages metadata extracted or computed for individual docu-
ments and collections and makes them available for other components. This, for
example, includes extracted entities, context information or memory buoyancy
and preservation values. The metadata repository relies on the fact that all re-
source can be identified by an unique ID, which enable the retrieval of metadata
stored in the repository for a resource. The repository might also include pointers
to summaries for individual documents and/or document collections.

Delivery Mode REST service
Subcomponents Metadata storage, access/search support
Main APIs, input and
output formats

Main methods include storage of new metadata for a resource, deletion of meta-
data for a resource, access to specific types of metadata given a resource and
search in the metadata repository

Plan for integration at
M18

Basic implementation according to the implemented scenarios, to support inte-
gration

Plan for integration at
M27/M36

Improvements and extensions of repository

Language, runtime
framework

Not decided yet, maybe re-use existing Open Source component and integrate
it into the middleware

SW and HW Re-
quirements

Requires database for managing the metadata

Dataset for testing Some simple test cases should be sufficient
License Open Source, if not otherwise implied by using an existing component

Table 3: Metadata Repository (Middleware, Shared Component)

Page 18 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name ID Manager
Partner Responsible L3S
Contributing Partners EURIX, dkd, DFKI
Work Packages WP8, WP5 (interaction with WP9 and WP10 for identifier formats)
Reference Deliver-
ables

D8.2, D5.2

Current Status Started component design
Short description and
role

This components mediates between the IDs used in the archive and the IDs used
in the active systems. It might also be used to acquire new unique IDs.

Delivery Mode REST service or API
Subcomponents ID Repository, ID Generator
Main APIs, input and
output formats

Main methods include generation of new ID and retrieval of IDs from a repository.
Different standards can be used, such as UUID.

Plan for integration at
M18

Basic implementation according to the implemented scenarios, to support inte-
gration

Plan for integration at
M27/M36

Maybe improvements and extensions if necessary.

Language, runtime
framework

Not decided yet, maybe re-use existing Open Source component to be integrated
in the middleware

SW and HW Re-
quirements

Requires database for managing the IDs

Dataset for testing Some simple test cases should be sufficient
License Open Source, if not otherwise implied by using an existing component

Table 4: ID Manager (Middleware, Shared Component)

Component Name Scheduler
Partner Responsible EURIX
Contributing Partners L3S, LTU
Work Packages WP8, WP3 (for scheduling of forgetting process), WP5 (for scheduling of archiv-

ing process)
Reference Deliver-
ables

D8.2

Current Status Started component design
Short description and
role

Component that starts processes such as the forgetting process or an archiving
process based on a defined schedule (e.g. once a day) or based on events, for
which it is listening, plus additional conditions.

Delivery Mode Active component, triggers other components and processes
Subcomponents scheduling queue, event management
Main APIs, input and
output formats

API that allows the scheduling of processes based on time and events, API for
requesting status information, API for deletion of scheduled events

Plan for integration at
M18

Basic implementation for simple time-based scheduling of processes and tasks

Plan for integration at
M27/M36

Improvements and extensions

Language, runtime
framework

Not decided yet, maybe re-use existing Open Source component to be integrated
in the middleware

SW and HW Re-
quirements

Not yet specified, depending on the actual implementation

Dataset for testing Some scheduling test cases
License Open Source, if not otherwise implied by using an existing component

Table 5: Scheduler (Middleware, Shared Component)

Page 19 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Context-Aware Preservation Manager
Partner Responsible LTU
Contributing Partners LTU, EURIX, dkd, DFKI, TT, IBM
Work Packages WP5
Reference Deliver-
ables

D5.3

Current Status Under development
Short description and
role

The function of the Preservation Planning entity, and to some extent the Admin-
istration entity, in the AIS (Archive Information System / Preservation System)
need to be ”stretched out” to meet the active systems (and their owners). Some
of it is available through other components in the PoF middleware, but there still
exists a need to handle changes on both sides of the middleware, which includes
enabling communication of events and triggers relevant for both the preservation
systems and the (owners of the) active systems. As an example, the preserva-
tion systems have internal preservation plans which might include transformation
of classes of objects at ingest, if the objects are in unsuitable formats. These
”default transformations” need to be communicated to the active system. This
may be communicated already at (or before) initial ingest of the first object of
a specific type, since these plans are known beforehand. As another example,
the AIS is responsible for preservation of the objects for long term, but the For-
getIT system must be able to re-contextualize the objects into active systems.
This means that when the AIS make a decision to transform a class of objects
- this must be communicated to the active system and its owners. If this trans-
formation would ruin the chances of re-contextualization, e.g. by deleting the
original object, some actions need to be taken to ensure the possibility of re-
contextualization (e.g. transformation to another format for re-contextualization).

Delivery Mode REST service
Subcomponents Event logger
Main APIs, input and
output formats

JSON, XML

Plan for integration at
M18

Transmission of simple events between active system and AIS

Plan for integration at
M27/M36

Communicate changes in AIS and active systems, regarding e.g. information
structure

Language, runtime
framework

Java/J2EE, Java App Server/Tomcat

SW and HW Re-
quirements

Linux

Dataset for testing Transformation event description in JSON or XML
License Open Source

Table 6: Context-Aware Preservation Manager (Middleware, Shared Component)

Page 20 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

3.3 Middleware components supporting core ForgetIT functionality

In addition to the shared components, which are part of the PoF Bus, the PoF Middleware
contains seven components, which implement core ForgetIT functionality (see Figure 1):

• the Forgettor Component (see Table 7)

• the Extractor Component (see Table 8)

• the Condensator Component (see Table 9)

• the Contextualizer Component (see Table 10)

• the Navigator Component (see Table 11)

• the Collector/Archiver Component (see Table 12)

Together with the preservation system these components implement the three core For-
getIT principles of managed forgetting, contextualized remembering and synergetic preser-
vation. Each of these components is described in a separate Table below.

Page 21 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Forgettor
Partner Responsible L3S
Contributing Partners DFKI
Work Packages WP3 , WP9, WP10 (requirements and interfaces)
Reference Deliver-
ables

D3.2, D3.3, D3.4

Current Status Under development
Short description and
role

This component is managing the forgetting process. It computes the Preserva-
tion Value (PV) and Memory Buoyancy (MB) for resources based on information
provided by the active system for this computation such as usage information,
context information and creator as well as based on the previous MB and PV
values, statistics and defined strategies and rules. The results of the Forget-
tor Component will be made accessible for the active system via the Metadata
Repository (see shared components). It is planned that the Forgettor is activated
on a regular basis. For this purpose it interacts with the Scheduler.

Delivery Mode REST service
Subcomponents (1) Assessor : The Assessor calculates values for current information value as-

sessment of a resource, especially MB and PV. It takes into account different
forgetting strategies as well as the previous values and statistics from the last
computation. (2) Strategy Manager (database): Different forgetting strategies
and rules are managed here. (3) Statistics/Value Repository (database): Stor-
ing all the values computed for information value assessment (including MB and
PV) and statistics and using it for computing new values. (4) Analyzer : Classi-
fying resources based on a strategy and the values computed in Assessor and
statistics.

Main APIs, input and
output formats

INPUT: resource IDs and metadata associated with the resource (mainly infor-
mation on resource usage and resource context). The metadata should be a
flexible data-structure, e.g. key-value pairs, so that it can be extended for differ-
ent cases. OUTPUT: Computed MB and PV values together with classification
in more high level classes (e.g. ”to be preserved” or ”low importance”); these will
be used to update the respective information in the Metadata repository to make
the most current values available for the active system. It is still under discus-
sion if the Forgettor also informs the scheduler or the active system about the
completion of the computation (e.g. via event listeners).

Plan for integration at
M18

A first simple version of the Forgettor with a simple function for computing mem-
ory buoyancy

Plan for integration at
M27/M36

Intermediate and final release of the overall Forgettor

Language, runtime
framework

Java

SW and HW Re-
quirements

Data base for storing historical values

Dataset for testing usage logs and other usage information from the applications
License Open Source

Table 7: Forgettor (Middleware, WP3 component)

Page 22 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Extractor
Partner
Responsible CERTH
Contributing
Partners USFD, TT
Work Packages WP4
Deliverables D4.2, D4.3, D4.4
Current Status Under development
Short description and
role

The Extractor will take as input the original media items (e.g. a text, a collection
of texts, or a collection of images) and extract information that is potentially use-
ful not only for the subsequent execution of the Condensator, but also for other
components or functionalities of the overall ForgetIT system (e.g. search). This
extracted information will constitute the Extractor component’s output, and will be
provided in simple text or XML files (to be decided, depending on what is most
convenient for integration; there is some flexibility). We envisage the Extractor to
include subcomponents that will perform the following tasks:(1) Named entity ex-
traction from text, (2) Tokenization, (3) Visual feature extraction from images, (4)
Concept detection in images, (5) Image visual quality assessment. The Extractor
could be either a command line tool or a REST service (both options seem fea-
sible). A first release of at least some of the Extractor’s subcomponents will be
available on M12 (as part of D4.2), and a first release of the complete Extractor
will be available on M18 (D8.3 deadline)

Delivery Mode Command line tool or REST service
Subcomponents (1) Named entity extraction from text, (2) Tokenization, (3) Visual feature ex-

traction from images, (4) Concept detection in images, (5) Image visual quality
assessment

Main APIs, input and
output formats

Input: One text file or a collection of text files or a collection of images. Output:
plain text or XML files with analysis results

Plan for integration at
M18

A first release of the overall Extractor, integrating most of its subcomponents

Plan for integration at
M27/M36

Intermediate and final release of the overall Extractor

Language, runtime
framework

Matlab/Octave, C++, Executables/binaries which require OpenCV libraries
(.dll/.so)

SW and HW Re-
quirements

Operating System: Windows or Linux, Matlab/octave, GPU: NVIDIA (desired)

Dataset for testing (1) travel of two colleagues to Edinburgh 2013, (2) travel pictures from CostaR-
ica2013, (3) A dataset of 1000 images has been assembled and experiments
are being run for blur detection, (4) Other external datasets (e.g. TRECVID)

License OpenCV - BSD license (GPU SURF and SURF implementation, an application
of Surf algorithm is patented in the US), liblinear - Copyright (c) 2007-2013 The
LIBLINEAR Project.

Table 8: Extractor (Middleware, WP4 Component)

Page 23 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Condensator
Partner Responsible CERTH
Contributing Partners USFD, TT
Work Packages WP4
Reference Deliver-
ables

D4.2, D4.3, D4.4

Current Status Under development
Short description and
role

The Condensator will get as input the Extractor’s output and possibly also the
original media items that were processed by the latter in order to generate this
output (or a subset of these media items). Based on this input, the Condensator
will perform further text and image analysis tasks whose results are specific to
the condensation process and thus of no need to other parts of the ForgetIT sys-
tem, and will use all the available analysis results for performing text and image
collection condensation. No feedback loop from the Condensator back to the Ex-
tractor is foreseen (thus, the Condensator can only be called after the Extractor
has been executed for the same data, and the Condensator’s results will not be
fed in any way back to the Extractor). The final output of the Condensator will be
the condensed (i.e., summarized) media items or collections, or pointers to them
(depending on media item modality and on what is more convenient for integra-
tion, to be decided at a later stage). Any other analysis results generated within
the Condensator for the purpose of supporting the generation of the condensed
media collections most probably will not be returned to the system (since, by
definition, these are only intermediate results useful for condensation; otherwise,
their extraction would be part of the Extractor). We envisage the Condensator
to include subcomponents that will perform the following tasks: (1) deeper lin-
guistic analysis, (2) Text summarization, (3) Face detection and clustering, (4)
Image collection summarization. The Condensator could be either a command
line tool or a REST service (both options seem feasible). A first release of at
least some of the Condensator’s subcomponents will be available on M12 (as
part of D4.2), and a first release of the overall Condensator will be available on
M18 (D8.3 deadline)

Delivery Mode Command line tool or REST service
Subcomponents (1) deeper linguistic analysis, (2) text summarization, (3) face detection and clus-

tering, (4) image collection summarization
Main APIs, input and
output formats

Input: the output of the Extractor, which is plain text or XML files with analysis
results, and the original text and image items, Output: text files, image files and
plain text or XML files with analysis results

Plan for integration at
M18

A first release of the overall Condensator, integrating most of its subcomponents

Plan for integration at
M27/M36

Intermediate and final release of the overall Condensator

Language, runtime
framework

Matlab/octave, c++ Executables/binaries which require OpenCV libraries
(.dll/.so)

SW and HW Re-
quirements

Operating System: Windows or Linux, Matlab/Octave

Dataset for testing (1) travel of two colleagues to Edinburgh 2013, (2) travel pictures from CostaR-
ica2013, (3) Other external datasets (e.g. TRECVID)

License OpenCV - BSD license

Table 9: Condensator (Middleware, WP4 Component)

Page 24 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Contextualizer
Partner Responsible USFD
Contributing Partners USFD, L3S, CERTH
Work Package WP6
Deliverables D6.1
Current Status In development
Short description and
role

The Contextualizer will embrace different subfunctionalities including as its core
functionality the equipment of information objects with sufficient context informa-
tion for their long-term interpretation and use, taking as input the original media
items (e.g. images, text, etc.) as well as the output of the Extractor and Con-
densator. Furthermore, it might also use external data sources for enriching the
context information (e.g. Wikipedia, or other pictures for the same event). This
information will be used to determine the context required to unambiguously de-
scribe the input media. This context is likely to be defined with reference to an
ontology; either large public ontologies, such as DBpedia, Freebase etc., or pri-
vate ontologies from the PIMO etc. Storing a complete copy of an ontology with
each preservation package is likely to be highly inefficient, and so this compo-
nent will also be responsible for determining the minimum context that can be
stored without loss of information. It will also interact with the Collector/Archiver
for preparing the context information for packaging. Contextualization will be trig-
gered by the intend to archive an individual information object or a set of informa-
tion objects. The exact nature of the contextualizer is likely to differ dependent
upon the media type. The exact formatting of the context has yet to be formal-
ized although most tools will output XML encoded data. Furthermore, it will also
be responsible for reflecting evolution in the active system (and the world) into
the stored context information, in order to keep the information objects as well
as the context information useful and understandable on the long run. This re-
quires mechanisms to get informed about major changes in the active systems
(e.g. in the ontology). Furthermore, it has to be identified which stored contexts
are effected by these changes and change has to be represented and propa-
gated into the Archive. For bringing information objects back into active use, a
mechanism is required to apply the encoded change to the context information
and/or to use them for integrating the information object into the current context
(re-contextualization). This might also require using external resources such as
Wikipedia or organizational information, if the captured context information is not
sufficient. A further type of change that can effect the understandability is termi-
nology evolution, which has to be detected and reflected in the context, in order
to keep things findable.

Delivery Mode REST service, initially a command line tool
Subcomponents different components for text versus images etc., components for contextualiza-

tion and re-contextualization
Main APIs, input and
output formats

REST service, definition of interfaces and response formats is in progress

Plan for integration at
M18

Basic component (separate components for different media types)

Plan for integration at
M27/M36

A more integrated component with advanced functionality

Language, runtime
framework

Java, C++

SW and HW Re-
quirements

Linux

Dataset for testing Not decided yet, probably user experiments
License released by USFD under LGPL

Table 10: Contextualizer (Middleware, WP6 Component)

Page 25 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Navigator
Partner Responsible USFD
Contributing Partners EURIX, L3S
Work Package WP6, WP8
Reference Deliver-
ables

D8.2

Current Status Started component design
Short description and
role

It is likely that the Navigator component will be highly integrated into the use case
tools and as yet the form it will take has not been fully defined. The component
will, however, be responsible for allowing users to see preserved items in their
context (both the context at the time of preservation and at retrieval) and allow
the navigation of the archive via links to other items via shared context links (i.e.
a photo collection of a trip to Edinburgh in 2013 would share a context with a
diary about a trip to Edinburgh in 2016). It is envisaged that an initial version
of this component will focus on providing a search interface across both active
and archived information, with later versions incorporating more ideas around
context navigation. Such a component would require access to both active and
preserved content and may need to be deployed within use case tools and the
archive (as a storlet) as well as within the middle layer to make navigation feasible
within sensible time constraints. This requires support for a shared index or a
method for combining the results from two indices into a meaningful way. For
the ranking, a time-aware search support is required, which favors information
objects in active use over information objects from the archive.

Delivery Mode REST Service
Subcomponents Index management, time-aware search support, context navigation support
Main APIs, input and
output formats

REST service, definition of interfaces and response formats is in progress

Plan for integration at
M18

A basic component

Plan for integration at
M27/M36

Advanced features depending on implemented scenarios

Language, runtime
framework

Not decided yet

SW and HW Re-
quirements

Linux

Dataset for testing Not specified yet, probably user experiments
License Released by USFD under LGPL

Table 11: Navigator (Middleware, WP6 Component)

Page 26 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Collector/Archiver
Partner Responsible LTU
Contributing Partners LTU, dkd, DFKI, EURIX
Work Package WP5
Reference Deliver-
ables

D5.2, D5.3, D5.4

Current Status Under development
Short description and
role

Triggered by an event from PoF, this component contacts the active systems and
collects data objects that should be preserved and prepares and submits them
to the preservation system by packaging the data objects together with relevant
metadata (into a SIP). The component receives a preservation request. Acting
on that request, the Collector fetches the object and metadata from provided ref-
erence, via the CMIS interface of the active system. The Collector notifies the
ID Manager with the CMIS-Id (GUID) of the object, and notifies the PoF Bus that
an object has been collected. Before a Submission Information Package (SIP)
can be created, other PoF components, such as the Extractor and Condensator,
need to process the object and extract relevant metadata and other characteris-
tics needed for the forgetting process. This metadata is stored in the Metadata
Repository, and on a trigger from the bus, the Archiver fetches metadata and
prepares the package and submits it to the Preservation System. There are at
least two options here: 1. The Archiver sends a reference to where the Preser-
vation System can fetch the package; 2. The Archiver sends the package to
the ingest folder of the Preservation System. In response to the submission,
the Archiver needs an ”archive ID” that should be sent to the ID Manager. The
Collector/Archiver is also responsible for restructuring Dissemination Informa-
tion Packages (DIP) into packages that the active system can handle to get the
information back into active use. As a response to a trigger, that can come
from the active system, or from PoF internal components (e.g. the scheduler),
a request is made to the Preservation System for a DIP. The DIP is then dis-
assembled and restructured if needed for adoption in the active system. This
may include restructuring of metadata in order to facilitate ingest into the active
system. Transformation of content objects is not considered to be a part of this
functional entity. Communication will chiefly be with active systems, and with the
Preservation system.

Delivery Mode Command line tool or REST service
Subcomponents Packager, Metadata extractor, Hash generator/checker
Main APIs, input and
output formats

Input/output: REST, REST-AtomPub, CMIS, custom PoF XML schema, TAR
package (SIP/DIP)

Plan for integration at
M18

Ingest workflow in place with basic functionality; Simple Re-contextualization of
DIP into active system

Plan for integration at
M27/M36

Continued development of ingest workflow, and in particular Re-
contextualization. Final component available at M36

Language, runtime
framework

Java/J2EE, Java App Server/Tomcat

SW and HW Re-
quirements

Required Linux OS

Dataset for testing Example data from applications
License Not yet available, possibly Open Source
Notes Dependencies: Condensator, Extractor, Contextualizer (i.e. Metadata Reposi-

tory) for metadata. Communicates with PoF adapters in active systems and AIS.

Table 12: Collector/Archiver (Middleware, WP5 Component)

Page 27 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

3.4 OAIS Platform and Cloud Storage

The Archive, which is compliant to the OAIS model, is described in Table 13. The cloud
storage system is described in Table 14. Together they realize the functionality for long
term storage.

Page 28 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name OAIS Platform
Partner Responsible EURIX
Contributing Partners
Work Package WP8
Reference Deliver-
ables

D8.3, D8.4, D8.6

Current Status Stable implementation available, to be customized
Short description and
role

The Archive is compliant to OAIS model [9] and implements the main functional
blocks: Ingest, Access, Preservation Planning, Data Management, Administra-
tion and Archival Storage. Several existing solutions have been evaluated in
order to choose a candidate implementation, since creating a new OAIS preser-
vation platform is beyond the scope of the project. The candidate solutions have
been selected using different criteria (see Section 5). The Archive should support
the packaging model selected in the project, each AIP will have its own identi-
fier which is assigned by the archive. Other identifiers could also be used, for
example those assigned by content producer and referring to original materials
(before digitization) or to other editorial categorizations (this is typically managed
using multiple DublinCore identifiers). The identifiers referring to the content in
the active systems should be managed by other Middleware components, such
as the ID Manager. The archive provides different mechanism for importing and
exporting packages, including a REST API for ingest and access. Concerning
access, the supported queries will include the search by AIP identifiers or by
minimal descriptive metadata (e.g. DublinCore). OAI-PMH should be supported
too. The archive includes its own workflow engine for managing ingestion and
access and for executing preservation rules. The customization of the archive
will include the development of an adapter to integrate the PDS.

Delivery Mode Platform running in application server on dedicated machine
Subcomponents Ingest, Access, Data Management, Preservation Management (Preservation

Planning and Administration), Archival Storage (provides interface to Cloud Stor-
age). A generic REST interface supporting OAI-PMH should be available. For
what concerns Ingest, almost all available solutions support METS [11] as main
metadata format for AIP, an additional component for metadata conversion could
be necessary to adapt the metadata representation coming from middleware.
For the Preservation Planning, processes executed close to the data (e.g. fixity
checks or format transformation) will make use of Storlets, a module for executing
such processes or for logging results in the AIP must be developed. For Archival
Storage, a module for storing AIPs, integrating PDS, must be implemented.

Main APIs, input and
output formats

Provides REST interface for ingest and access, AIP packaging model makes
use of METS for metadata description and a packaging format based on BagIt
or derivatives. Supported protocols include OAI-PMH, an additional CMIS or
JCR compliant interface must be implemented if required.

Plan for integration at
M18

Fully implemented and integrated. The adoption of an existing solution enables
an early integration of the archive in the overall architecture.

Plan for integration at
M27/M36

Refinements due to possible changes in the components or to demonstrate ad-
ditional scenarios.

Language, runtime
framework

Java, running in application server

SW and HW Re-
quirements

Linux server, enough disk space for resources and services (no additional stor-
age for AIPs)

Dataset for testing Picture dataset as first test, then content from both scenarios
License Open Source, GPL or BSD compliant
Notes Based on the evaluation of different candidate solutions, DSpace has been se-

lected for implementing the Archive in the PoF architecture.

Table 13: OAIS Platform (Archive, WP8 Component)

Page 29 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Component Name Cloud Storage Services
Partner Responsible IBM
Contributing Partners
Work Packages WP7
Reference Deliver-
ables

D7.2, D7.3, D7.4

Current Status Under development
Short description and
role

Preservation DataStores (PDS) is an OAIS-based preservation-aware storage
that serves as an advanced Archival Storage and supports offloaded functional-
ity. At the top, it provides an OAIS-based interface for operations on AIPs (e.g.,
ingest, access, delete), as well as an interface for preservation actions (e.g.,
check fixity, transform, add aggregation). At the bottom end, it utilizes various
generic cloud storage and compute from different providers. In addition, the
system includes a Storlet Engine that can be plugged into a private cloud or ob-
ject storage to execute computation modules (called Storlets), close to the data
(transformations or other resource consuming tasks executed on the archived
content can be done directly in the Archive without requiring to extract it to a
server and put it back into the Archive). The PDS interface specification can be
found on the ENSURE project web site [12, 13]. The underlying cloud storage
that we’ll use in PDS for ForgetIT is the OpenStack Swift Open Source frame-
work, enhanced with a Storlet Engine to perform computations close to the data.
Building the Storlet Engine and storlets for ForgetIT data and use cases is the
main focus of WP7. Examples of potential storlets for ForgetIT: (1) Summariza-
tion and aggregation processes to enable managed forgetting in the archive, (2)
Redundancy detection and deletion processes to support managed forgetting,
(3) Multimedia analysis algorithms, (4) Integrity checks to make sure the data is
not altered over time, (5) Format transformations

Delivery Mode REST service
Subcomponents PDS, OpenStack Swift, Storlet Engine
Main APIs, input and
output formats

PDS interfaces are documented in WP7 deliverables

Plan for integration at
M18

A first release of PDS with Storlet Engine and some ForgetIT storlets

Plan for integration at
M27/M36

Intermediate and final release of PDS with Storlet Engine

Language, runtime
framework

Java, Python

SW and HW Re-
quirements

Linux with OpenStack software and our extensions - we’ll provide our own virtual
machines

Dataset for testing Depends on ForgetIT use cases and storlets
License Proprietary

Table 14: Cloud Storage Services (Archival Storage, WP7 Component)

Page 30 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

4 Architecture Diagrams and Integrated Workflows

In this Section we present a first round of more in depth modeling of the PoF architecture
and the related processes. For this purpose, we adopt UML2 notations creating static and
dynamic diagrams of the architecture. In more detail, we are currently using component
diagrams among structure diagrams and activity diagrams among behavior diagrams.
Further, more fine-granular diagramms will be exploited in the next round of modelling. In
addition to deployment and component diagrams for the PoF Framework architeture, we
also describe two initial priority workflows which will be used to drive and validate early
integration of the main components in the PoF Middleware as well as their interaction with
the active systems and the archive system. For those integrated workflows we provide
activity diagrams.

4.1 Structure Diagrams

The component diagram of the architecture is depicted in Figure 4. It is based on the
architecture overview presented in Figure 1 and adds main interfaces between system
components. The functionality of the individual components has already been described
in the previous section. In Figure 3 a deployment diagram is shown, based on a possi-
ble configuration of systems and nodes which will be implemented for development and
testing (see also Section 8).

Figure 3: Deployment diagram of the PoF architecture

Page 31 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Fi
gu

re
4:

C
om

po
ne

nt
di

ag
ra

m
of

Po
F

ar
ch

ite
ct

ur
e

(g
re

en
:

co
m

po
ne

nt
s

de
ve

lo
pe

d
du

ri
ng

th
e

pr
oj

ec
t;

bl
ue

:
ex

is
tin

g
co

m
po

-
ne

nt
s

to
be

im
pr

ov
ed

an
d

cu
st

om
iz

ed
.)

Page 32 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

4.2 Integrated Workflows

Within the ForgetIT project it has been decided to identify a smaller set of workflows
including core ForgetIT functionalities. These workflows will be used to define priorities
for the integration activities in the first phase of the ForgetIT project (see also section
7). Figures 5 and 6 show the workflows that have been defined for this purpose, with the
following notations: (1) complex activities are written in bold (a subdiagram will be defined
in the future), while non-bold is used for actions related to less complex actions, (2) red
arrows are use to distinguish an ”object flow” (red) from ”control flow” (standard case, in
black).

The first workflow (see Figure 5) focuses on a basic form of synergetic preservation,
which enables the smooth transition of a resource from the active system into the archive
passing through the process of contextualization and packaging. The second workflow
(see Figure 6) focuses on core functionality of information value assessment as it is re-
quired for realizing the Managed Forgetting process. Both processes are described in
more detail below.

In implementing these first workflows the focus will be on ensuring proper interaction
between the individual components in the architecture. More advanced functionality for
the individual components will be added stepwise to the individual components in later
phases of the ForgetIT project.

Page 33 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

4.2.1 Workflow 1: Basic Synergetic Preservation

The workflow depicted in Figure 5 defines the process for a basic form of synergetic
preservation and shows the involvement of the ForgetIT components into this process.
Preservation is initiated by a preservation process, which can be scheduled either to start
on a regular basis or to be triggered by an event. In both cases the Scheduler, which is
part of the PoF bus (see Figure 4), will start the archiving process for a selected set of
resources. This process inspects the preservation values and the preservation status that
is stored for the resources in the Metadata repository and - based on this information -
decides, which of the resources are handed over to preservation. In the first phase of the
project, we focus on cases where the preservation value is explicitly manipulated in the
active system. A change of the preservation value is triggered by a preservation request
in the active system. The update of the preservation value is written into the Metadata
repository.

As a next step after deciding about preservation, a simple contextualization activity is
performed. This step adds core context information to the resource(s) to be archived.
For this purpose, the Contextualizer is used, which interacts with the Metadata repository,
the Extractor and possibly also with the active systems and external sources to collect
the required context information. The core challenge here is to derive concise context
information, which enables future interpretation, while not overloading the archive with
unnecessary information.

Both the resource(s) to be archived and the context information are handed over to the
Collector/Archivar component for packaging them into a SIP package. After this step the
resource is ready to be handed over to the Archival Information System.

At this point the archival of the packages in the Archival Information System is initialized.
This includes the checking of the packages for fitness to be archived. As a result of this
fitness test a transformation might become necessary. In the ForgetIT system this trans-
formation will be performed by a storlet foreseen for this purpose in the Cloud Computing
Storage System, which is part of the Archival Storage employed (see Figure 4). There-
fore, the transformation will be scheduled and will be performed once the packages have
been transferred into the Archival Storage, which is the next step in the workflow.

If the archival is successful the ID(s) assigned to the resource(s) in the archive are re-
turned to the PoF and stored in the ID Manager together with the time of archival, in order
to enable translation of an ID of the resource in the active system to the ID of the resource
in the archive. Furthermore, the scheduler will be informed about the completion of the
archival action.

In case of the failure of the archiving process, the Scheduler is notified accordingly and
decides about the notification of the active system.

Page 34 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Fi
gu

re
5:

P
ri

or
ity

W
or

kfl
ow

fo
r

B
as

ic
S

yn
er

ge
tic

P
re

se
rv

at
io

n
(c

om
pl

ex
ac

tio
ns

in
bo

ld
)

Page 35 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

4.2.2 Workflow 2: Basic Managed Forgetting Support

The workflow Basic Managed Forgetting Support (see Figure 6) is made up of two sepa-
rate processes for information value assessment, which both serve the purpose of helping
the user to better structure his/her information space according to the value or importance
of information (memory buoyancy). Such information value assessment is the starting
point for the managed forgetting process.

The first process starts from the observation of usage of resources in the active system.
Such information about the usage is collected by the active system and transferred into
a Message cache on the side of the PoF Middleware. Independent from this activity a
forgetting action can be scheduled in the PoF Middleware. This is done by the Scheduler,
e.g., on a regular basis. Once the scheduled Forgetting action is started, the Forgettor
component uses the relevant usage information from the cache (see above) and possibly
also further context information to compute new values for memory buoyancy (MB) and/or
preservation value (PV) for the considered resources. In addition, it also uses previous
MB and PV values as well as strategies for this computation. The new and classified MB
(and PV) values are stored into the Metadata Repository, which is part of the PoF bus.
The new values in the Metadata Repository can subsequently be accessed by the active
system, for example, in order to adapt the visualization resp. accessibility of resources in
the active system according to their MB value.

The second process in this workflow focuses on a quality-based contribution to Memory
Buoyancy rather than a usage-based one as in the case of the first process. This second
process is started by the active system by triggering a quality assessment process for
a newly captured set of images (e.g., in the Semantic Desktop) via the Scheduler. The
scheduler activates a service for performing the quality checking. This quality-assessment
service, which is part of the Extractor component gets access to the collection of images
under consideration, e.g., by uploading them. Subsequently the automated quality as-
sessment of the images is performed and the results of this assessment are stored into
the Metadata Repository. The quality assessment results in the Metadata Repository can
be accessed by the active system and can be used to trigger further activities such as
suggesting some of the images for deletion.

Page 36 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Fi
gu

re
6:

P
ri

or
ity

W
or

kfl
ow

fo
r

In
fo

rm
at

io
n

Va
lu

e
A

ss
es

sm
en

t
an

d
M

an
ag

ed
Fo

rg
et

tin
g

(c
om

pl
ex

ac
tio

ns
in

bo
ld

;
re

d
ar

ro
w

s:
ob

je
ct

flo
w

s;
bl

ac
k

ar
ro

w
s:

co
nt

ro
lfl

ow
s.

)

Page 37 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

5 OAIS solutions

An Archive component will be integrated into the ForgetIT architecture. It will provide an
interface to the PoF middleware and will integrate the cloud storage service.

For the actual implementation of the Archive in the PoF framework, the approach adopted
in the project has been to evaluate existing solutions compliant to the OAIS model, focus-
ing on Open Source solutions developed by other research projects and initiatives. The
rational for this decision is twofold: on the one hand, since several initiatives have already
developed preservation platforms inspired by OAIS supporting a large variety of content
types and formats, adopting an existing solution for this component rather than reinventing
the wheel is mandatory to ensure effective use of project resource: this allows focusing
effort on the added values provided by ForgetIT, namely the PoF approach; on the other
hand, commercial solutions available on the market have been discarded on purpose,
since an Open Source and free solution rather than a proprietary implementation better
suits the objectives of the project and the possibility to integrate the results developed in
the technical work packages.

The preliminary evaluation of the available OAIS platforms resulted in the selection of a
candidate for implementing the Archive (see Section 5.4). Further evaluation activity will
be performed, based on available datasets, to implement the simple scenarios described
before. The results will be part of D8.2.

5.1 Assessment criteria

The OAIS solutions reported in the following Sections provide a non-exhaustive list of
Open Source platforms which have been evaluated for the implementation of the ForgetIT
Archival Information System. The following requirements have been taken into account
for each solution:

• Open Source license, documentation, community, last stable release

• Technology Readiness Level (TRL), e.g. prototype or stable solution

• programming language, adopted technologies, runtime environment

• APIs and protocols for integration

• archive data model and packaging

• supported content types (see D9.1 [6])

• integration of cloud storage services (see D7.1 [5]) and other components

TRL is a measure used to assess the maturity of evolving technologies such as devices,
materials, components, software, work processes, etc., where the assessment is per-
formed during its development and in some cases during early operations. Typically, when

Page 38 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

a new technology is introduced (just invented or conceptualized), it is not suitable for im-
mediate application and integration in broader systems. New technologies are usually
subjected to experimentation, refinement, and testing. Once the technology is sufficiently
proven and has been validated, it can be integrated into a system/subsystem. TRL mea-
sure originates from aerospace environment and applications (just like OAIS), but gained
popularity also in other fields, such as software programming (see [14] and references
therein). TRL provides a common understanding of technology status, although readiness
does not necessarily fit with appropriateness or technology maturity. In the context of For-
getIT, we used this measure associated to different candidate solutions for the Archive, in
order to provide summary information about the readiness of the solution for integration
in the overall architecture. The assigned value is based on the evaluation of the platforms
against the criteria mentioned above. Since different definitions are used and significant
differences exist in terms of maturity at a given technology readiness level, we used the
scale adopted by U.S Department of Defense [15] (and the similar ones from NASA and
ESA, reported in [14]) and will provide a short description in each table for convenience.

5.2 Candidate platforms

For each solution a fact sheet is provided, with information relevant for the purpose of
the present document, that is selecting a candidate implementation of the archive in the
PoF architecture. Additional information, technical details and support are available on
the project web site provided for each solution.

Disclaimer 1 Based on assessment criteria above, we identified the best candidate so-
lution. Anyway the evaluation of these platforms is still in progress: additional feedbacks
will be provided when taking into account actual integration tests with other ForgetIT com-
ponents and data sets during the testbed. Even if the probability of changing candidate
Archive implementation is low, the ultimate choice will be reported in D8.2.

Disclaimer 2 Commercial and proprietary solutions haven’t been considered here.

The following solutions have been considered:

• DSpace, described in Table 15

• RODA, described in Table 16

• Archivematica, described in Table 17

• Fedora, described in Table 18

• P4, described in Table 19

• iRODS, described in Table 20

For each platform we provide a fact sheet with a short description of the main features
and a discussion against the assessment criteria mentioned above.

Page 39 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Name DSpace
Project Page http://www.dspace.org
License BSD
Short Description DSpace is an out-of-the-box Open Source repository application for delivering

digital content to end-users, typically used for creating open access repositories
for scholarly and/or published digital content. It is considered the most widely
used Open Source repository software for non-profit and commercial organisa-
tions. DSpace captures, stores, indexes, preserves and redistributes an orga-
nization’s research material in digital formats. Research institutions worldwide
use DSpace for a variety of digital archiving needs - from institutional reposito-
ries (IRs) to learning object repositories or electronic records management, and
more. DSpace is freely available as Open Source software, which can be cus-
tomized and extended. An active community of developers, researchers and
users worldwide contribute their expertise to the DSpace Community. While
DSpace shares some feature overlap with content management systems and
document management systems, the DSpace repository software serves a spe-
cific need as a digital archives system, focused on the long-term storage, access
and preservation of digital content.

Source Code, Doc-
umentation, Commu-
nity

Source code available on Sourceforge [16] and GitHub [17], documentation avail-
able on project web site [18], the project community is supported by DuraS-
pace [19], and institutions adopting DSpace.

Last Stable Release 3.2 (July 2013)
TRL 8 (Actual system completed and qualified through test and demonstration)
Language, Runtime Java, application server and RDBMS required
APIs and Protocols REST APIs, supports OAI-PMH and SWORD
Data Model and
Packaging

DSpace defines a structured Data Model [20], providing a representation of dig-
ital contents in terms of collections, communities, items, and sites, associating
different levels of support for objects to be preserved. AIP is a Zip file con-
taining a METS manifest and all related content bitstreams. Each bitstream is
associated with one bitstream format. Because preservation services may be an
important aspect of the DSpace service, it is important to capture the specific
formats of files that users submit. In DSpace, a bitstream format is a unique and
consistent way to refer to a particular file format. An integral part of a bitstream
format is an either implicit or explicit notion of how material in that format can
be interpreted. Each bitstream format additionally has a support level, indicating
how well the hosting institution is likely to be able to preserve content in the for-
mat in the future. There are three possible support levels that bitstream formats
may be assigned by the hosting institution: Supported, Known or Unsupported.
Although DSpace provides some default values for Supported, Known and Un-
known formats, each institution should determine the appropriate values based
on local preservation strategy, e.g. after careful consideration of costs and re-
quirements. Each item has one qualified Dublin Core metadata record. Other
metadata might be stored in an item as a serialized bitstream, but DublinCore
is stored for every item for interoperability and ease of discovery. The Dublin
Core may be entered by end-users as they submit content, or it might be derived
from other metadata as part of an ingest process. Items can be removed from
DSpace in one of two ways: They may be ’withdrawn’, which means they remain
in the archive but are completely hidden from view. In this case, if an end-user at-
tempts to access the withdrawn item, they are presented with a ’tombstone,’ that
indicates the item has been removed. For whatever reason, an item may also
be ’expunged’ if necessary, in which case all traces of it are removed from the
archive. Broadly speaking, DSpace holds three sorts of metadata about archived
content: descriptive, administrative and structural.

Page 40 (of 65) www.forgetit-project.eu

http://www.dspace.org

ForgetIT Deliverable D8.1

Content Types, For-
mats, Standards

Virtually any type of file, regardless of format or extension can be stored in
DSpace. In this context, ”support” for such a file is defined as being able to up-
load the file, and offering it for download to end users. For text formats, DSpace
offers full-text indexing and searching. For image formats, DSpace offers thumb-
nail generation and display. DSpace explicitly supports HTML documents keep-
ing the cross references, although with some limitations (only static content and
all links must be relative). METS is the reference standard format for SIP, AIP
and DIP. Packagers are software modules that translate between DSpace Item
objects and a self-contained external representation, or ”package”. A Package
Ingester interprets, or ingests, the package and creates an Item. A Package Dis-
seminator writes out the contents of an Item in the package format. A package is
typically an archive file such as a Zip or ”tar” file, including a manifest document
which contains metadata and a description of the package contents. DSpace
Simple Archive Format can be used for export and ingest. In the current version
of DSpace, handles are used as internal identifiers. DSpace uses the Handle
System from CNRI as the persistent identifier for each digital object. Handles
are resolved to actual URLs via a resolution service. Handles in DSpace (and
elsewhere) are currently implemented as HTTP URIs, but can also be modified
to work with future protocols. The Handle system is also able to support existing
bibliographic identifiers such as ISBN or ISSN.

OAIS Compliance OAIS also serves as a framework for developers of digital repository software.
The impact of the OAIS model on DSpace is apparent, even if DSpace has
evolved independently following several requirements. Data Management func-
tionality leverages DSpace Data Model for handling archived items, bitstreams
and metadata. Ingest is implemented by a batch ingester and a web submit
UI. For Archival Storage, DSpace offers two means for storing bitstreams: the
first is in the file system on the server; the second is using SRB (Storage Re-
source Broker), a data grid management system enabling distributed storage.
Both are achieved using a simple, lightweight API. SRB is a storage manager
that offers unlimited storage and straightforward means to replicate (in simple
terms, backup) the content on other local or remote storage resources. Con-
cerning Access, DSpace allows end-users to discover content in a number of
ways, including via external reference, such as a Handle (containing the AIP ID),
searching for one or more keywords in metadata or extracted full-text, brows-
ing though title, author, date or subject indices, with optional image thumbnails.
DSpace’s indexing and search module provides a configurable Lucene-based
search engine and a API which allows for indexing new content, regenerating
the index, and performing searches on the entire corpus, a community, or col-
lection. Behind the API is the Java freeware search engine Lucene. Lucene
provides fielded searching, stop word removal, stemming, and the ability to in-
crementally add new indexed content without regenerating the entire index. Web
UI enables views of different indexes and browsing. DSpace identifies two levels
of digital preservation: bit preservation, and functional preservation. Bit preser-
vation ensures that a file remains exactly the same over time (not a single bit
is changed) while the physical media evolve around it. Functional preservation
goes further: the file does change over time so that the material continues to
be immediately usable in the same way it was originally while the digital formats
(and the physical media) evolve over time.

Page 41 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

OAIS Compliance
(continued)

Some file formats can be functionally preserved using straightforward format mi-
gration. Other formats are proprietary, or for other reasons are much harder to
preserve functionally. Compared to other platforms, DSpace does not include,
in the vanilla installation, tools for migrating Bitstreams from one format to the
other, but these can be easily written using DSpace Java API. Concerning Ad-
ministration, DSpace offers also additional features such as usage and system
statistics, a checksum checker and reports. The purpose of the checker is to
verify that the content in a DSpace repository has not become corrupted or been
tampered with. The functionality can be invoked on an ad-hoc basis from the
command line, or configured via cron or similar. Options exist to support large
repositories that cannot be entirely checked in one run of the tool.

Integration of For-
getIT Components

A plugin manager is provided, although deeper analysis on the source code is
required. An Add-on mechanism is provided to extend DSpace with additional
components. Extension and add-ons provided by the community are maintained
on the project wiki. DSpace supports DuraCloud as cloud storage solution, in
order to integrate PDS additional software and a plugin must be implemented.

Table 15: DSpace

Page 42 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Name RODA
Project Page http://www.roda-community.org/
License GNU LGPLv3
Short Description RODA is a complete digital repository that delivers functionality for all the main

units of the OAIS reference model. The platform is maintained by KEEP SOLU-
TIONS [21], and is built on top of Fedora (see Table 18). RODA is based on Open
Source technologies and is supported by existing standards such as the OAIS,
METS, EAD and PREMIS. A plug-in and task scheduling mechanism is provided
to add more functionality to the system (e.g. new preservation events, alerts,
tools, etc.). The repository natively supports normalization on ingest for different
file formats. RODA can be extended to comply with more file formats or bet-
ter preservation action tools. Support for migration-based preservation actions
is built into the system. Preservation actions and management within RODA is
handled by a task scheduler. The task scheduler allows the administrator to de-
fine the set of rules that trigger specific actions, and when these should take
place. Preservation actions include format conversions, checksum verifications,
reporting (e.g. to automatically send SIP acceptance/rejection emails), notifica-
tion events, etc. The basic services in RODA are provided by Fedora Commons,
the application framework that supports RODA. These services account for ele-
mentary tasks at the Data Management and Archival Storage level. Examples
of such services are: store and index a digital object, add a data stream to a
Fedora object, get a data stream, purge an object, find objects and list data
streams. RODA Core Services are responsible for carrying out more complex
tasks such as handling the ingest workflow, querying the repository in advanced
ways and carrying out administrative functions on the repository. RODA enables
tight integration of systems already existing in the client institution.

Source Code, Doc-
umentation, Commu-
nity

Source code available on GitHub [22], documentation available on project web
site [23], community is supported by KEEP SOLUTIONS [21] and institutions
adopting RODA.

Last Stable Release 1.1.0 (July 2013)
TRL 6 (System/subsystem model or prototype demonstration in a relevant environ-

ment)
Language, Runtime Java, requires application server and RDBMS. Built on top of Fedora.
APIs and Protocols REST and SOAP APIs, supports OAI-PMH
Data Model and
Packaging

RODA’s content model is atomistic and very much PREMIS-oriented. Each in-
tellectual entity is described by an EAD-component metadata record. These
records are organized hierarchically in order to constitute a full archival descrip-
tion but are kept separately within the Fedora content model. Relationships
between EAD-components are created using Fedoras own RDF linking mech-
anism. Additionally, each leaf record (i.e. a file or an item) is linked to a rep-
resentation object, i.e. a Fedora object that embeds all the files and bitstreams
that compose the digital representation. Finally, each of these objects are linked
together by a set of PREMIS entities that maintain information about the digital
objects provenance and history of events (PO nodes). Each preservation event
that takes place inside the repository is recorded as a new preservation-event
node. Special events, like format migrations, establish relationships between
two preservation-representation nodes. These are called linking events. Each
preservation event is executed by an agent, whether this be a system user or an
automatically triggered software application. The agent that triggered the event
is recorded in PO agent nodes.

Page 43 (of 65) www.forgetit-project.eu

http://www.roda-community.org/

ForgetIT Deliverable D8.1

Content Types, For-
mats, Standards

RODA is capable of ingesting and normalizing (according to the preservation
plan in place) text documents, raster images, relational databases, video, and
audio. A plug-in mechanism enables RODA to support additional formats. RODA
follows open standards using EAD for description metadata, PREMIS for preser-
vation metadata, METS for structural metadata, and several standards for tech-
nical metadata (e.g. NISO Z39.87 for digital still images).

OAIS Compliance RODA is composed of several functional modules supporting processes of a
common archival information system. Ingest is composed by a configurable
multi-step workflow that validates submitted information and also extracts tech-
nical metadata from ingested files. The ingest process also normalizes formats
according to the preservation policy in place and includes both automatic and hu-
man quality assurance steps. RODA supports the ingest of new digital material
as well as associated metadata in 4 distinct ways: (1) online submission (self-
archiving), (2) off-line submission using an client application, (3) batch import,
and (4) integration with third-party document management software via invoca-
tion of SOAP Services or client API. SIPs are submitted to a series of tests to
assess their integrity, completeness and conformity to the ingest policy. After
decompressing the SIP, the validation process performs different tasks, such as
virus check, METS envelope syntax check, SIP completeness check, file integrity
check, descriptive metadata check, preservation metadata check, representation
check (at least one representation exists within the SIP) and normalization. Rep-
resentations whose format do not conform to the preservation formats defined
by the preservation policy are automatically converted to the correct format. The
original representation is maintained by the repository. Descriptive metadata is
based on the International Standard for Archival Description (ISADg) and is sup-
ported by the EAD/XML standard. RODA fully implements a configurable ingest
workflow that not only validate SIPs, but also enables manual appraisal by data
management professionals. Digital objects are migrated to preservation formats
during the ingest process according to the policies in place. Preservation man-
agement within RODA is handled by scheduled events. The set of rules that trig-
ger specific preservation actions and when these should take place are defined.
Preservation actions comply to a common API, to enable creation and instal-
lion of new preservation actions in the repository. Preservation actions include
format converters, checksum verifications, reporting tools (e.g. to automatically
send SIP acceptance/rejection emails), etc. As a fallback strategy, the system
always retains the original versions of digital representations, so that an emula-
tion preservation strategy still remains viable in the future. RODA implements
preservation planning through the possibility of running and scheduling preser-
vation actions right in the administration module. Administration components
allow editing of the descriptive metadata and definition of rules for preservation
interventions such as scheduling integrity checks, initiate a format migration pro-
cesses, or control the users or groups that are authorized to perform certain
actions in the repository. RODA includes administration features such as user
management, reporting, ingest workflow configuration, log viewer, permissions
management, etc. Quality assurance and preservation metadata ensure au-
thenticity of records while providing traceable records of all changes and events
that occur to a digital representation. All actions performed in the repository are
logged for security and accountability reasons.

Page 44 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

OAIS Compliance
(continued)

Access to data is provided through embedded web viewers and downloads. Sev-
eral versions of the same data are provided, including the originally ingested dig-
ital representation. The consumer is able to browse over available collections to
view or download digital representations kept in the repository. Depending on
the type of the digital object, different viewers or disseminators are used. For
example, text documents are delivered to consumers without resorting to any
particular artifacts. They are delivered in PDF format, so the consumer should
use its favourite PDF viewing application. Documents composed of several im-
ages (such as digitised works) on the other hand are displayed in special Web
viewing applications that allow consumers to navigate through the pages of the
representation. Data storage is managed by Fedora Commons, the data layer
backend. Data is stored on the file system separately from the metadata.

Integration of For-
getIT Components

RODA exposes all its functionality via Web Services. Java APIs are available to
integrate external components programmatically. Integration with cloud storage
requires customization of the underlying Fedora services.

Table 16: RODA

Page 45 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Name Archivematica
Project Page https://www.archivematica.org
License GNU AGPL v3
Short Description Archivematica is a free and Open Source digital preservation system that is de-

signed to maintain standards-based, long-term access to collections of digital
objects. Archivematica uses a micro-services design pattern to provide an in-
tegrated suite of software tools that allows users to process digital objects from
ingest to access in compliance with the ISO-OAIS functional model. Users mon-
itor and control the micro-services via a web-based dashboard. Archivematica
uses METS, PREMIS, Dublin Core and other best practice metadata standards.
Archivematica implements format policies based on an analysis of the signifi-
cant characteristics of file formats. Archivematica is maintained by Artefactual
Systems [24], in collaboration with UNESCO and other institutions.

Source Code, Doc-
umentation, Commu-
nity

Source code available on GitHub [25], documentation on Archivematica wiki [26],
community supported by Artefactual Systems [24]

Last Stable Release 0.10 (April 2013), 1.0 announced (Fall 2013)
TRL 7 (System prototype demonstration in an operational environment)
Language, Runtime Python for implementing micro-services, requires Django MVC framework. Vir-

tual Appliance provided for different virtualization environments (VirtualBox,
VMWare, KVM)

APIs and Protocols REST APIs, default access system is AtoM. Provides export to DSpace format.
Programmatic access to indexed AIP is available through Elasticsearch [27].

Data Model and
Packaging

SIP based on METS, normalization process during ingestion. LoC BagIt format
(zip) used for AIP. Export to DSpace data model is supported, Archivematica
can act as dark-archive for DSpace, providing back-end preservation functional-
ity while DSpace remains the user deposit and access system. Archivematica
supports also DIP upload to AtoM and CONTENTdm services.

Content Types, For-
mats, Standards

METS supported for ingest and access. PREMIS and DC are supported stan-
dards for preservation and descriptive metadata. Tested with documents, pic-
tures and videos. Defines access and preservation formats for each media type
and includes normalization tools (mainly ffmpeg).

OAIS Compliance Archivematica implements a micro-service approach to digital preservation. The
Archivematica micro-services are granular system tasks which operate on a con-
ceptual entity that is equivalent to an OAIS information package. The physical
structure of an information package will include files, checksums, logs, submis-
sion documentation, XML metadata, and others. These information packages
are processed using a series of micro-services. Micro-services are provided by
a combination of Archivematica Python scripts and one or more of the free, Open
Source software tools bundled in the Archivematica system. Each micro-service
results in a success or error state and the information package is processed ac-
cordingly by the next micro-service. There are a variety of mechanisms used
to connect the various micro-services together into complex, custom workflows.
Preservation plans available for different media types, based on analysis of the
significant characteristics of the files. The user dashboard provides interface
mapped onto OAIS functional entities. The web dashboard allow users to pro-
cess, monitor and control the Archivematica workflow processes. It is developed
using Python-based Django MVC framework. The Dashboard provides a multi-
user interface that will report on the status of system events and make it simpler
to control and trigger specific micro-services. This interface allows users to easily
add or edit metadata, coordinate AIP and DIP storage and provide preservation
planning information.

Page 46 (of 65) www.forgetit-project.eu

https://www.archivematica.org

ForgetIT Deliverable D8.1

OAIS Compliance
(continued)

Archivematica maintains the original format of all ingested files to support migra-
tion and emulation strategies. However, the primary preservation strategy is to
normalize files to preservation and access formats upon ingest. Normalizing is
the process of converting ingested digital objects to preservation and/or access
formats. In Archivematica the original objects are always kept along with their
normalized versions. Archivematica groups file formats into format policies (e.g.
text, audio, video, raster image, vector image, etc.). Archivematica’s preservation
formats must all be open standards. Additionally, the choice of formats is based
on community best practices, availability of free and Open Source normalization
tools, and an analysis of the significant characteristics for each media type. The
choice of access formats is based largely on the ubiquity of web-based viewers
for the file format. Not all files can be normalized on ingest because for example
there are no available Linux-based Open Source tools to handle the conversions
and/or no agreed upon preservation formats. In addition, some filetypes are not
necessarily in the best preservation format but are still so ubiquitous and well-
supported that they need not be normalized at the present time. In these cases,
the files are kept in their original formats. A Format Policy Registry is available
to implement rules of Preservation Planning.

Integration of For-
getIT Components

Archivematica provides a full-fledged preservation platform which can be in-
stalled and used out-of-the-box. Extending Archivematica for integration with
external components requires modification of the source code. Default storage
mechanism is local file system.

Table 17: Archivematica

Page 47 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Name Fedora
Project Page http://www.fedora-commons.org/
License Apache License, v2.0
Short Description Fedora is a digital repository, developed and maintained under the stewardship

of the not-for-profit organization DuraSpace [19]. The Fedora Repository Project
provides a robust Open Source software system based on a core repository ser-
vice (exposed as web-based services with well-defined APIs) and an array of
supporting services and applications including search, messaging and adminis-
trative clients. Fedora aims at ensuring that digital content is durable by provid-
ing features that support digital preservation. The FedoraCommons refers to the
community surrounding the Fedora Repository Project.

Source Code, Doc-
umentation, Commu-
nity

Source code available on GitHub [28], documentation on Fedora Commons
wiki [29], project community supported by DuraSpace, a registry of institutions
adopting Fedora is maintained.

Last Stable Release 3.7.0 (Sept. 2013)
TRL 8 (Actual system completed and qualified through test and demonstration)
Language, Runtime Java, requires application server and RDBMS
APIs and Protocols REST and SOAP APIs, supports OAI-PMH
Data Model and
Packaging

Fedora Digital Object Model [30], digital objects stored internally using FOXML.

Content Types, For-
mats, Standards

Fedora Digital Object Model supports videos, images documents and others.
FOXML format is preferred schema for ingest and access, METS (using Fedora
extension) supported for ingest and access, also MPEG-21 DIDL.

OAIS Compliance Ingest and Access available thorugh REST or SOAP APIs or Web UI. Batch
ingestion supported. Supported SIP formats are FOXML or METS. Export for-
mats are FOXML, METS and ATOM. Export to new archive or purging existing
object are supported. Search possible using Web UI or REST APIs, using iden-
tifier or DC metadata. Data Management based on own object model, specific
component for archive Administration is available. Archival Storage implemented
by Low Level Storage interface, supporting disks and cloud services (experimen-
tal). Periodic activities for Preservation Planning are supported at the datastream
level (e.g. checksums). Datastreams can be updated or migrated. Descriptive
metadata can be modified, too.

Integration of For-
getIT Components

A plugin or adapter to integrate with PDS is required. DuraSpace provide their
own cloud solution (DuraCloud), but it is not free. Integration of other compo-
nents delivered as REST services or command line tools is possible.

Table 18: Fedora

Page 48 (of 65) www.forgetit-project.eu

http://www.fedora-commons.org/

ForgetIT Deliverable D8.1

Name P4
Project Page http://prestoprime.eurixgroup.com/p4
License GPLv3
Short Description P4 is the preservation platform developed by EU FP7 PrestoPRIME project [31].

P4 implements the main functional entities of the OAIS model for an archive man-
aging AV content and is made up of three main components: (1) core libraries,
implementing OAIS components for storage, metadata management, ingest, ac-
cess, administration and preservation actions; (2) web server, providing REST
interfaces for interacting with the archive; (3) web UI, providing ingest, access
and administrative functionalities according to the user profile. The web server
provides interfaces for ingest, access and administration. The user can ingest
SIP files into the platform, get information about the status of the submitted jobs
and of the whole system, search for AIP available in the archive, and get access
to the DIP, through the web interface. The user interface manages local users
and can connect to multiple P4 instances with different user identifiers, each as-
sociated to a specific role (consumer, producer, administrator) for that platform.
The external tools and services can be integrated using a plugin framework, the
motivations for this being twofold: on one hand it provides a flexible way to in-
tegrate new components (e.g. to execute some specific steps during ingestion),
on the other hand the platform and the core components are decoupled from
specific tools or scenarios and P4 users have access to an open framework
which can be used out-of-the-box, by configuring a minimum set of parameters.
P4 includes a workflow engine, a lightweight execution environment to config-
ure custom tasks based on external tools and services, exploiting the APIs of
core modules. The external tools used to implement a specific workflow can be
deployed within a P4 plugin. Tools developed within the project and integrated
in P4 cover metadata extraction (e.g. MXF tools), quality assessment, storage
(disks via NFS or CIFS, LTO tapes, shared or federated storage systems such
as iRODS and MServe), emulation (Multivalent), SLA and monitoring, rights,
search and indexing (Solr), AV material segmentation and access, format mi-
gration, fixity checks. Concerning the storage configuration, different workflows
have been tested in PrestoPRIME. In particular the configuration with two copies
of the master quality file was implemented either with LTO tapes (two copies on
two different tapes) or with iRODS as policy-driven storage (the automatic replica
rule, with periodic fixity checks was defined).

Source Code, Doc-
umentation, Commu-
nity

Source code available on GitHub [32], documentation available on the web
site [33], currently the platform is part of the PrestoCentre tools library [34]

Last Stable Release 2.2.0 (Dec. 2012)
TRL 6 (System/subsystem model or prototype demonstration in a relevant environ-

ment)
Language, Runtime Java, Servlet Container required, no RDMS (XML DB)
APIs and Protocols REST APIs, supports OAI-PMH.

Page 49 (of 65) www.forgetit-project.eu

http://prestoprime.eurixgroup.com/p4

ForgetIT Deliverable D8.1

Data Model and
Packaging

The data model makes use of METS as the main wrapper format for descrip-
tive and technical metadata, as well as for mapping AV resources within the
AIP. Other metadata standards are supported, such as MPEG-7 for technical
metadata, PREMIS for preservation events, MPEG-21 for rights representation,
DublinCore for descriptive metadata and others. P4 also supports DNX, a meta-
data format built on top of PREMIS vocabulary, used in Rosetta. Using P4 plu-
gins, virtually any metadata standard can be used in the AIP. Access interface
supports also OAI-PMH protocol. The data model is tailored to broadcast en-
vironment (editorial entities, master and browsing qualities, B2B contracts). No
compressed formats such as zip, BagIt or tarball used for AIP, METS contains
references to metadata and AV files.

Content Types, For-
mats, Standards

Focus on videos, but other content types can be supported defining new work-
flows. Based on METS, supports DC, MPEG-21 CEL, MPEG-7 AVDP, DNX,
PREMIS.

OAIS Compliance Ingest and access provided by web UI or REST APIs, using METS as unique for-
mat for all OAIS information packages, common to other platforms. An advanced
search engine based on Solr allows indexing of different descriptive and techni-
cal metadata. Several solutions are available for Archival Storage, supporting
local and distributed storage. Preservation Planning is provided by integrated
tools for fixity checks or format migration, no scheduler is implemented in the
platform, makes use of external systems (e.g. iRODS). The index is stored in a
fast native-XML DB and periodic triggers are executed for backup and integrity
checks of the AIP XML files. Additional preservation operation are provided by
storage solutions (e.g. the LTO component). Data Management and Administra-
tion are provided by the P4 web UI, including monitoring of jobs and workflows.

Integration of For-
getIT Components

The favourite integration mechanism is making use of REST interfaces over
HTTP, to get loose coupling and reduce dependencies. P4 provides a plug-in
mechanism to integrate external components or services in the workflow. In or-
der to integrate cloud services, a new storage plugin should be implemented and
added to the storage layer (if we use REST APIs this should be straightforward).

Table 19: P4

Page 50 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Name iRODS
Project Page https://www.irods.org
License BSD
Short Description iRODS is the integrated Rule-Oriented Data-management System, a community-

driven, Open Source, data grid software solution. It is a policy-based data man-
agement system, implementing a micro-services pattern, based on rule engine.
iRODS helps manage (organize, share, protect, and preserve) large sets of com-
puter files. Collections can range in size from moderate to a hundred million files
or more totaling petabytes of data. The requirements to manage large collec-
tions of data include both a number of generic capabilities and diverse features
that depend on the details of different applications. iRODS is also highly con-
figurable and easily extensible for a very wide range of use cases through user-
defined micro-services, without having to modify core code. iRODS is used by
many projects and teams, small and large, national and international, computer
technologists and non. iRODS includes a set of features that blend together
well and augment each other to form a comprehensive whole. iRODS major
features include high-performance network data transfer and a unified view of
disparate data. iRODS uses unique logical names that are separate from the
names as stored physically, providing a global logical name-space via the iCAT
Metadata Catalog in a DBMS to keep track of the names and locations of files
so users don’t have to. iRODS also supports a wide range of physical storage,
including Unix and Windows files systems, archival storages systems (HPSS,
tapes), etc. iRODS provides easy, automated replication and backup to multi-
ple storage devices/locations at the physical level. So, users access the files
via the logical names and the system finds and gets the physical files. iRODS
also manages metadata, both system (automatic) and user-defined, and stored
in the iCAT Metadata Catalog running in a DBMS. Users can query the system
to find, use, verify, etc. files with particular attributes (metadata). iRODS pro-
vides fine-grained controlled access, by user or group. iRODS innovative Rule
Engine applies local and community policies expressed as rules and executed
via server-side micro-services. Rules invoke other rules and/or micro-services
making the system highly configurable for site-specific needs and automated for
cost-effective administration of today’s mushrooming data collections. Workflows
can be executed as part of normal operation (e.g. a Rule can be run as a file is
initially stored to automatically make an offsite replica) or as delayed or periodic
Rules. iRODS can operate as a complete stand-alone system (utilizing storage
systems, database systems, and networks underneath) and also as middleware
where higher-level and application-specific software makes use of iRODS as part
of its infrastructure.

Source Code, Doc-
umentation, Commu-
nity

Source code and documentation available on the project wiki [35], supported
by the DICE group of the University of North Carolina at Chapel Hill and the
University of California San Diego.

Last Stable Release 3.3 (July 2013)
TRL 8 (Actual system completed and qualified through test and demonstration)
Language, Runtime C, Perl, Shell. Provides a service running the catalog, other nodes can be dis-

tributed, requires a RDBMS.
APIs and Protocols iRODS provides GUI, Web, WebDAV, command line interfaces, as customized

shell commands used for managing content and administering the archive, and
also a Java API (Jargon) allowing programmatic integration in external systems.
Development of rules for specific tasks requires a custom language.

Page 51 (of 65) www.forgetit-project.eu

https://www.irods.org

ForgetIT Deliverable D8.1

Data Model and
Packaging

Data Virtualization is the underlying idea in the iRODS data grid system. In-
stead of a physical naming, iRODS adopts a virtual (or logical name) for ev-
ery entity that interface with user or application. The mapping from the logical
name to physical name is maintained persistently in the Metadata Catalog and
the mapping is done at run time by the Virtualization sub-system. The virtu-
alization pervades all aspects of iRODS and is seamlessly integrated into the
various modules. iRODS provides different types of data transfer mechanism.
iRODS can get and put files from a remote storage system (which is fronted by
an iRODS server) or can transfer from one storage to another (as a third-party
transfer). The access of the files can be either as a single file transfer or as a
whole collection/sub-collection transfer. It can transfer these files in bulk mode
(when several small files are being transferred) or in parallel mode when a large
file is being transferred. All these different options are optimally selected de-
pending upon the file sizes and the number of files being transferred. iRODS
data model defines logical name spaces for files (POSIX, Grid and collection at-
tributes), users, resources, rules, micro-services and states. A resource, or stor-
age resource, in iRODS terminology, is a software/hardware system that stores
data. An iRODS resource is a logical mapping of a ”resource name” to a number
of physical attributes that define the resource. The iRODS clients/servers can
then operate on remote or local data on different types of resources through a
common interface. Currently, iRODS supports 3 resource types - unix file sys-
tem, HPSS, and Amazon S3.

Content Types, For-
mats, Standards

Any kind of file can be virtually stored. Provides support for metadata, search
and other operations on the content.

OAIS Compliance iRODS software was designed to allow curators utilising heterogeneous stor-
age and computing facilities to define policies without being concerned with the
technical detail of how the system implements those policies and without hav-
ing to respond to changes in technical infrastructure. iRODS uses a data grid
architecture, running server software and a rule Engine on each server that will
become part of the virtual repository. A separate, unique iRODS iCAT Meta-
data Catalog uses a database to track descriptive and preservation metadata.
Users determine workflows and automated tasks that the Rule Engine carries
out regardless of the originating server. iRODS was not conceived as an imple-
mentation of the OAIS model, but to fullfil other requirements for a rule-oriented
data management system leveraging grid technologies in the context or research
and academic institutions. Nevertheless, iRODS is widely used in the research
community, in high performance computing projects, and in preservation envi-
ronments and digital libraries. Several principles borrowed from OAIS could be
implemented in iRODS. For example, OAIS describes a standard model for ac-
cess to information repositories that could be ported on top of iRODS. Within the
iRODS data grid, standard functions (micro-services) are defined which can be
composed into workflows to support procedures that are applied to the contents
of the information repository. Data Management procedures are controlled by
policies that are managed in a distributed rule engine.

Integration of For-
getIT Components

iRODS provides a mechanism for integrating external components as additional
micro-services or rules. Additional components for ingest and access should be
developed on top of iRODS, unless some of the add-ons developed by the com-
munity already fits with ForgetIT requirements. iRODS is already based on Data
Grid and provides a policy-driven storage, enabling micro-services and rules run-
ning close to the data. This feature conflicts with one of the expected outcomes
of the project, namely the cloud storage services, which should provide analogue
features using the Storlet technology.

Table 20: iRODS

Page 52 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

5.3 Other solutions, projects and initiatives

Several EU projects have been funded in the field of digital preservation. Almost all
projects developed tools for digital preservation which have been partially or totally de-
livered as Open Source. The outcomes of such projects have also provided valuable
feedbacks to the digital preservation community and have been often used to support the
initial development of popular digital preservation systems. Typically, the main limitation
of such tools is due to the short lifetime of the supporting projects, which have the pri-
mary focus of demonstrating the project objectives rather than providing stable software.
Software engineering and maintenance require resources which cannot always be guar-
anteed after the project end. Several initiatives such as the Digital Preservation Coalition,
the PrestoCentre or the The Planets Foundation (just to mention a few), try to support the
community in maintaining software tools and libraries for the digital preservation.

After the initial phase where the focus of projects like DELOS [36] was to raise awareness
on the digital preservation issues and different initiatives such as the Digital Curation Cen-
tre and Digital Preservation Europe started, several projects have been funded focusing
on research and development of digital preservation technologies, processes, audit and
other technical aspects. Such group includes CASPAR [37], PLANETS [38], Shaman [39],
PrestoPRIME [31], SCAPE [40], ENSURE [12], TIMBUS [41] and many others. Some
Coordinated Actions such as Presto4U [42] have also been funded. An other example of
Open Source digital preservation platform is DPSP1, a collection of software applications
developed by National Archives of Australia2, supporting the goal of digital preservation.
The Digital Preservation Coalition [43] provides also technology watch and training, sup-
porting the dissemination and adoption of best practices and technologies in the digital
preservation community.

5.4 Selection of the OAIS platform

The OAIS solutions reported in Section 5.2 are good candidates for the implementation
of the Archive in the PoF architecture. Taking into account the criteria identified in Sec-
tion 5.1, at the moment the most promising one seems to be DSpace.

DSpace is stable and supported by a huge community of users and developers and has
been adopted by about one thousand institutions worldwide, which have chosen it as
the reference solution for their institutional repositories. The compliance to OAIS model,
mainly for what concerns aspects related to Preservation Planning, is progressing but
additional customization is required. Fedora, the other solution from DuraSpace, is not
conceived as an out-of-the-box implementation and the amount of work required to cus-
tomize and prepare the platform is still considerable. RODA, which is built on top of
Fedora, provides additional features related to the actual preservation of the contents and
is strongly OAIS-oriented. It is a relatively new project which could benefit from wider

1http://sourceforge.net/projects/dpsp
2http://naa.gov.au

Page 53 (of 65) www.forgetit-project.eu

http://sourceforge.net/projects/dpsp
http://naa.gov.au

ForgetIT Deliverable D8.1

adoption. Archivematica is compliant to OAIS and provides advanced management of file
formats though normalization, there is an increasing interest towards this solution which
could increase its adoption. P4 and iRODS, for different reasons, cannot be considered
equivalent to the previous solutions, from the ForgetIT point of view. The former is still in
a prototype status and is mainly focused on videos, although it integrates several useful
technologies for AV digital preservation, while the latter was not conceived as an OAIS
platform but could provide a valuable solution for the storage.

The selected platform will be integrated in the overall architecture and described in deliv-
erable D8.2. The test infrastructure is currently in place and additional tests are required,
based on actual data sets, which are in preparation. Additional limitations or advantages
will be analysed when the other components will be available for integration.

The support of the ForgetIT data model will provide an additional criterion for the choice.
The data model will be described in deliverable D8.2.

Page 54 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

6 Middleware Solutions

The PoF Middleware will play a crucial role in the overall ForgetIT architecture, since it will
provide the bridge between the active systems and the archive. Almost all components
developed in the project by the technical WPs will be integrated in the Middleware, as
part of one or more workflows. As a consequence, the middleware should be flexible and
easily extensible and any unnecessary complexity should be avoided.

For the implementation of the PoF Middleware, we will adopt the following approach: for
the early integration of the components we will use a lightweight solution, which should al-
low an easy integration of a few components in order to demonstrate a complete workflow
starting from content creation and usage by active systems, submission to the middle-
ware, processing through a limited number of components (e.g. the extractor and the
contextualizer), ingest into the archive and final deposit into the cloud storage; then af-
ter content transformation in the cloud storage using storlets, the content will be brought
back for active use (see also Section 4.2 for the details of the workflow). After this stage,
we will try to integrate more complex and robust middleware solutions according to the
requirements.

A possible candidate for the implementation of this lightweigth middleware component
with minimal functionalities could be the workflow engine from P4 platform, which can be
used to easily integrate command line tools and remote components available through
REST interface. Another approach could be the use of a JMS component, such as the
one included in Apache ServiceMix, to develop a Message-Oriented-Middleware (MOM),
where different queues can be defined and a listener for each queue can invoke the
appropriate component for processing. The results can be passed to the following queue
through an XML message.

In the meanwhile different enterprise solutions will be evaluated, including full-fledged
integration suites, integration platforms, application servers or simply Enterprise Service
Bus (ESB) frameworks. Even if several commercial solutions implementing an enterprise-
level middleware are available, the approach adopted in the project is to evaluate only free
and Open Source solutions, supported by an active community of developers. There are
currently several commercial ESB implementations on the market. However, many of
these are built on top of an existing application server or messaging server, locking the
implementation into a specific vendor.

Concerning the evaluation criteria, the middleware should provide, among other function-
alities, the communication layer for all components, as well as the function to integrate
components and to manage different business processes. Web interfaces must be pro-
vided for integration with other components of the architecture.

The main advantage of using an ESB component in the middleware is that it can act as
a transit system for carrying data between applications which can be in the enterprise or
spread across the web. The main benefit is that different applications can communicate
with each other using a shared protocol. The ESB provides service creation and host-

Page 55 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

ing, service mediation, message routing and data transformation, with exchange of data
across varying formats and transport protocols.

Several candidate solutions have been proposed so far, based on previous experience
and expertise from partners. Further investigation is in progress. According to the crite-
ria above, the following solutions could be evaluated: Mule ESB3, JBoss ESB4, Apache
ServiceMix5, Apache UIMA6, Cloud Foundry7 and Taverna8.

Mule ESB is a lightweight Java-based ESB and integration platform enabling quick and
easy connection of applications and data exchange among them. As any ESB solutions,
it aims at providing an easy integration of existing systems, regardless of the different
technologies that the applications use. Examples of such technologies include JMS, Web
Services, JDBC, HTTP, and more.

JBossESB is part of the JBoss Enterprise SOA Platform. The software is Enterprise Ap-
plication Integration (EAI) or business integration software. The software is middleware
used to connect systems together, especially non-interoperable systems, providing busi-
ness process monitoring and management, connectors, transaction manager, security,
application containers, messaging services, naming and directory service and others.

Apache ServiceMix is an Open Source integration container that unifies the features
and functionality of several other components into a runtime platform, which can be used
to build integration solutions. It provides a complete, enterprise ready ESB powered by
OSGi Alliance, released under Apache License v2. Apache ServiceMix provides reliable
messaging, routing and enterprise integration patterns, RESTful web services, a workflow
engine based on BPEL, a JMS component and an orchestrator.

Taverna is an Open Source and domain-independent Workflow Management System.
The Taverna suite is written in Java and includes the Taverna Engine (used for enact-
ing workflows) that powers both the Taverna Workbench (the desktop client application)
and the Taverna Server (which allows remote execution of workflows). Taverna is widely
adopted to implement digital preservation workflows and has been used also in other
projects related to digital preservation, such as SCAPE.

Two other solutions could be also considered, even if they implement different paradigms,
because they provide useful features.

Apache UIMA is an unstructured information management application, a software system
able to analyze large volumes of unstructured information in order to discover knowledge
that is relevant to an end user. An example UIM application might ingest plain text and
identify entities, such as persons, places, organizations; or relations. UIMA provides
capabilities to wrap components as local or remote processors, to define data structures,

3http://www.mulesoft.org/
4http://www.jboss.org/jbossesb
5http://servicemix.apache.org/
6http://uima.apache.org/
7http://www.cloudfoundry.com/
8http://www.taverna.org.uk/

Page 56 (of 65) www.forgetit-project.eu

http://www.mulesoft.org/
http://www.jboss.org/jbossesb
http://servicemix.apache.org/
http://uima.apache.org/
http://www.cloudfoundry.com/
http://www.taverna.org.uk/

ForgetIT Deliverable D8.1

data flows and workflows to implement processing pipelines. It can scale to very large
volumes by replicating processing pipelines over a cluster of networked nodes.

Cloud Foundry is an Open Source cloud computing platform as a service (PaaS) soft-
ware, providing a choice of clouds, developer frameworks and application services, aiming
at making faster and easier to build, test, deploy and scale applications. Cloud Foundry
is developed by VMware and released under the terms of the Apache License 2.0.

The middleware solutions mentioned above will be evaluated and tested in the test envi-
ronment and the results will be included in D5.2 [7].

Page 57 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

7 Integration Plan

According to the DoW, three releases are expected for the ForgetIT framework, at M18
(D8.3), M27 (D8.4) and M36 (D8.6) respectively. In parallel two releases of the reference
model will be available, at M15 (D8.2) and at M36 (D8.5) respectively.

7.1 Plan for the first ForgetIT release

For the first release of the integrated framework we will adopt a two-step approach: we will
start with the integration of a limited number of components in order to demonstrate the
two identified simple integrated workflows (see Section 4.2) involving the four main blocks
of the architecture . This early integration will demonstrate that a complete workflow can
be executed, starting from active content use, through managed forgetting, contextualiza-
tion, archiving and storage and pushing of the content back to active use after transforma-
tion. With this infrastructure in place, we will be able to test the main interfaces provided
by each system and the communication among the different layers. From this we expect
the elicitation of further requirements with respect to the interaction between components.
We will also evaluate the packaging model used for archiving and the final deposit on the
cloud storage. After this phase will be completed, we will add more components to the
middleware, to add additional functionalities. According to the plan for the development
of the components, for almost all of them a first version will be ready by the time of the
first release. They will be improved and extended during the project lifetime, also taking
into account evaluation results from the applications (pilots in month 23). Concerning the
middleware implementation, the most appropriate solution will be adopted, focusing on
actual integration of the components and trying to avoid unnecessary complication.

In a nutshell, for the first release the project will deliver a preliminary version of the frame-
work with the main architecture blocks already integrated and able to communicate. This
will be used to demonstrate two initial integrated priority workflows for both the personal
and organizational scenario.

7.2 Preliminary plan for the other releases

A detailed integration plan for the other releases is not possible at this time. We can expect
that after the first platform release, the evaluation from the users will provide additional
feedbacks which will help in improving the overall system. The further development of the
components will also provide additional features to be integrated. The plan for the other
releases will be defined after completing the first release following the lines described in
the DoW.

Page 58 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

8 Test Environment

The activities related to development and integration of architecture components will be
supported by a test environment which is already available to all partners. The test en-
vironment depicted in Figure 7, hosted by EURIX, will be available from outside only to
project partners using a VPN connection to grant access to a ForgetIT dedicated private
network. This will guarantee the appropriate level of confidentiality for all development
activities under the consortium agreement.

Figure 7: Configuration of the test environment

The test environment includes a DELL PowerEdge R320 server, equipped with Linux
(Ubuntu 12.04 LTS 64-bit), and a 8 TB NAS for data storage, connected via dedicated Gb
Ethernet connection.

The testbed server provides a virtualization environment based on Kernel-based Virtual
Machine (KVM) [44]. KVM is a full virtualization solution for Linux on x86 hardware con-
taining virtualization extensions (Intel VT or AMD-V) and consists of a loadable kernel
module providing the core virtualization infrastructure and a processor specific module.
Using KVM, one can run multiple virtual machines running unmodified Linux or Windows
images. Each virtual machine has private virtualized hardware: a network card, disk,
graphics adapter, etc. The kernel component of KVM is included in the main Linux kernel
since version 2.6.20.

Each system which is part of the overall ForgetIT architecture will be provided as a new
virtual machine for KVM (qcow2 format) and will be available on the dedicated network
accessible via VPN. Each system or component to be tested and integrated in the For-
getIT platform will be provided by each partner in a virtual machine and will be uploaded
using an FTP service (secured by VPN) for being installed.

A ForgetIT dedicated network has been created, the IP addresses of the different services
available will be shared among all partners. An FTP area is also available for uploading

Page 59 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

and sharing huge files for the integration and test (e.g. virtual machines, installers, con-
figuration files, test samples, ...). The initial activities of development and test for each
component will be performed by each partner at their own institution. For example the
cloud storage services based on OpenStack Swift will be initially developed and tested at
IBM premises and when a new release is ready for testing by other partners will be de-
ployed to the test environment. For specific purposes or events, the partners could decide
to deliver part of or the whole system to other servers and infrastructures, for example in
case of specific testbed events which require datasets or other resources which cannot
be supported or managed in the test environment.

Page 60 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

9 Conclusions and future work

In this deliverable we have described the PoF architecture, the main systems and com-
ponents developed and integrated in the project as well as some candidate solutions for
implementing the main building blocks of the overall architecture. A preliminary plan for
integrating and testing the different results provided by the technical work packages has
been included and the setup of the test environment which is being used for development
and testing has been also described.

In the next WP8 deliverables, the reference model and the framework implementation
based on the present architecture will be reported. In particular, deliverable D8.3 (ex-
pected at M18) will describe the first release of the framework, with integrated compo-
nents, supported workflows and content types as well as the adopted solutions for the
archive and the middleware. The first release of the platform will be tested and the col-
lected feedbacks will be included in the second release, expected at M27 (reported in
deliverable D8.4).

Page 61 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

Page 62 (of 65) www.forgetit-project.eu

ForgetIT Deliverable D8.1

References

[1] ForgetIT. D3.1 - Report on Foundations of Managed Forgetting. http:
//www.forgetit-project.eu/fileadmin/fm-dam/deliverables/
ForgetIT_WP3_D3.1.pdf, August 2013.

[2] ForgetIT. D4.1 - Information Analysis, Consolidation and Concentration for Preser-
vation - State of the Art and Approach. http://www.forgetit-project.eu/
fileadmin/fm-dam/deliverables/ForgetIT_WP4_D4.1.pdf, July 2013.

[3] ForgetIT. D5.1 - Foundations of Synergetic Preservation. http://www.
forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_
WP5_D5.1.pdf, July 2013.

[4] ForgetIT. D6.1 - State of the Art and Approach for Contextualization.
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/
ForgetIT_WP6_D6.1.pdf, July 2013.

[5] ForgetIT. D7.1 - Foundations of Computational Storage Services. http:
//www.forgetit-project.eu/fileadmin/fm-dam/deliverables/
ForgetIT_WP7_D7.1.pdf, July 2013.

[6] ForgetIT. D9.1 - Application Use Cases & Requirements Document.
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/
ForgetIT_WP9_WP10_D9.1.pdf, August 2013.

[7] ForgetIT. D5.2 - Workflow Model and Prototype for Transition between Active System
and AIS, Expected on February 2014.

[8] OASIS. Content Management Interoperability Services. https://www.
oasis-open.org/committees/cmis. Retrieved on 31 October 2013.

[9] CCSDS. Reference Model for an Open Archival Information System. http://
public.ccsds.org/publications/archive/650x0m2.pdf. Retrieved on 31
October 2013.

[10] TYPO3. Source code repository. http://typo3.org/about/typo3-the-cms.
Retrieved on 31 October 2013.

[11] Library of Congress. Metadata Encoding and Transmission Standard. http://
www.loc.gov/standards/mets/. Retrieved on 31 October 2013.

[12] ENSURE Project. http://ensure-fp7-plone.fe.up.pt/site/. Retrieved
on 31 October 2013.

[13] ENSURE Project. PDS Interface Specification. http:
//ensure-fp7-plone.fe.up.pt/site/deliverables/
pds-cloud-external-interface-specification/at_download/file.
Retrieved on 31 October 2013.

Page 63 (of 65) www.forgetit-project.eu

http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP3_D3.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP3_D3.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP3_D3.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP4_D4.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP4_D4.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP5_D5.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP5_D5.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP5_D5.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP6_D6.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP6_D6.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP7_D7.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP7_D7.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP7_D7.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP9_WP10_D9.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP9_WP10_D9.1.pdf
https://www.oasis-open.org/committees/cmis
https://www.oasis-open.org/committees/cmis
http://public.ccsds.org/publications/archive/650x0m2.pdf
http://public.ccsds.org/publications/archive/650x0m2.pdf
http://typo3.org/about/typo3-the-cms
http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/mets/
http://ensure-fp7-plone.fe.up.pt/site/
http://ensure-fp7-plone.fe.up.pt/site/deliverables/pds-cloud-external-interface-specification/at_download/file
http://ensure-fp7-plone.fe.up.pt/site/deliverables/pds-cloud-external-interface-specification/at_download/file
http://ensure-fp7-plone.fe.up.pt/site/deliverables/pds-cloud-external-interface-specification/at_download/file

ForgetIT Deliverable D8.1

[14] Technology Readiness Level. http://en.wikipedia.org/wiki/
Technology_readiness_level. Retrieved on 31 October 2013.

[15] United States Department of Defense. Technology readiness assessment (tra) guid-
ance. http://www.acq.osd.mil/chieftechnologist/publications/
docs/TRA2011.pdf, April 2011. Retrieved on 31 October 2013.

[16] DSpace SourceForge Repository. https://sourceforge.net/projects/
dspace/files. Retrieved on 31 October 2013.

[17] DSpace GitHub Repository. https://github.com/DSpace/DSpace. Retrieved
on 31 October 2013.

[18] DSpace Documentation. https://wiki.duraspace.org/display/DSDOC3x/
DSpace+3.x+Documentation. Retrieved on 31 October 2013.

[19] DuraSpace. http://www.duraspace.org. Retrieved on 31 October 2013.

[20] DSpace Data Model. https://wiki.duraspace.org/display/DSDOC3x/
Functional+Overview#FunctionalOverview-DataModel. Retrieved on 31
October 2013.

[21] Keep Solutions. http://www.keep.pt. Retrieved on 31 October 2013.

[22] RODA GitHub Repository. https://github.com/keeps/roda. Retrieved on 31
October 2013.

[23] RODA Documentation. https://github.com/keeps/roda/wiki/
Developer-guide. Retrieved on 31 October 2013.

[24] Artefactual Systems. http://www.artefactual.com. Retrieved on 31 October
2013.

[25] Archivematica GitHub Repository. https://github.com/artefactual/
archivematica. Retrieved on 31 October 2013.

[26] Archivematica Documentation. https://www.archivematica.org/wiki/
Documentation. Retrieved on 31 October 2013.

[27] elasticsearch. Open Source Distributed Real Time Search & Analytics. http://
www.elasticsearch.org. Retrieved on 31 October 2013.

[28] Fedora GitHub Repository. https://github.com/fcrepo. Retrieved on 31 Oc-
tober 2013.

[29] Fedora Documentation. https://wiki.duraspace.org/display/
FEDORA37/Fedora+3.7+Documentation. Retrieved on 31 October 2013.

[30] Fedora Digital Object Model. https://wiki.duraspace.org/display/
FEDORA37/Fedora+Digital+Object+Model. Retrieved on 31 October 2013.

Page 64 (of 65) www.forgetit-project.eu

http://en.wikipedia.org/wiki/Technology_readiness_level
http://en.wikipedia.org/wiki/Technology_readiness_level
http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf
http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf
https://sourceforge.net/projects/dspace/files
https://sourceforge.net/projects/dspace/files
https://github.com/DSpace/DSpace
https://wiki.duraspace.org/display/DSDOC3x/DSpace+3.x+Documentation
https://wiki.duraspace.org/display/DSDOC3x/DSpace+3.x+Documentation
http://www.duraspace.org
https://wiki.duraspace.org/display/DSDOC3x/Functional+Overview#FunctionalOverview-DataModel
https://wiki.duraspace.org/display/DSDOC3x/Functional+Overview#FunctionalOverview-DataModel
http://www.keep.pt
https://github.com/keeps/roda
https://github.com/keeps/roda/wiki/Developer-guide
https://github.com/keeps/roda/wiki/Developer-guide
http://www.artefactual.com
https://github.com/artefactual/archivematica
https://github.com/artefactual/archivematica
https://www.archivematica.org/wiki/Documentation
https://www.archivematica.org/wiki/Documentation
http://www.elasticsearch.org
http://www.elasticsearch.org
https://github.com/fcrepo
https://wiki.duraspace.org/display/FEDORA37/Fedora+3.7+Documentation
https://wiki.duraspace.org/display/FEDORA37/Fedora+3.7+Documentation
https://wiki.duraspace.org/display/FEDORA37/Fedora+Digital+Object+Model
https://wiki.duraspace.org/display/FEDORA37/Fedora+Digital+Object+Model

ForgetIT Deliverable D8.1

[31] PrestoPRIME Project. http://www.prestoprime.eu. Retrieved on 31 October
2013.

[32] P4 Repository. https://github.com/prestoprime/p4. Retrieved on 31 Octo-
ber 2013.

[33] P4 - PrestoPRIME Preservation Platform. http://prestoprime.eurixgroup.
com/p4. Retrieved on 31 October 2013.

[34] P4 Documentation. https://www.prestocentre.org/library/tools/p4.
Retrieved on 31 October 2013.

[35] iRODS Documentation. https://www.irods.org/index.php/
Documentation. Retrieved on 31 October 2013.

[36] DELOS Project. http://www.dpc.delos.info. Retrieved on 31 October 2013.

[37] CASPAR Project. http://www.casparpreserves.eu. Retrieved on 31 October
2013.

[38] PLANETS Project. http://www.planets-project.eu. Retrieved on 31 Octo-
ber 2013.

[39] Shaman Project. http://shaman-ip.eu/. Retrieved on 31 October 2013.

[40] SCAPE Project. http://www.scape-project.eu. Retrieved on 31 October
2013.

[41] TIMBUS Project. http://timbusproject.net/. Retrieved on 31 October 2013.

[42] Presto4U Project. https://www.prestocentre.org/4u. Retrieved on 31 Oc-
tober 2013.

[43] Digital Preservation Coalition. http://www.dpconline.org/. Retrieved on 31
October 2013.

[44] Kernel-based Virtual Machine. http://www.linux-kvm.org. Retrieved on 31
October 2013.

Page 65 (of 65) www.forgetit-project.eu

http://www.prestoprime.eu
https://github.com/prestoprime/p4
http://prestoprime.eurixgroup.com/p4
http://prestoprime.eurixgroup.com/p4
https://www.prestocentre.org/library/tools/p4
https://www.irods.org/index.php/Documentation
https://www.irods.org/index.php/Documentation
http://www.dpc.delos.info
http://www.casparpreserves.eu
http://www.planets-project.eu
http://shaman-ip.eu/
http://www.scape-project.eu
http://timbusproject.net/
https://www.prestocentre.org/4u
http://www.dpconline.org/
http://www.linux-kvm.org

	List of Authors
	Contents
	Executive Summary
	Introduction
	ForgetIT Architecture
	Active Systems
	Middleware for synergetic preservation, managed forgetting and contextualized remembering
	Archive
	Cloud Storage Services

	Architecture Components
	Active Systems
	Shared Components of the PoF Middleware
	Middleware components supporting core ForgetIT functionality
	OAIS Platform and Cloud Storage

	Architecture Diagrams and Integrated Workflows
	Structure Diagrams
	Integrated Workflows
	Workflow 1: Basic Synergetic Preservation
	Workflow 2: Basic Managed Forgetting Support

	OAIS solutions
	Assessment criteria
	Candidate platforms
	Other solutions, projects and initiatives
	Selection of the OAIS platform

	Middleware Solutions
	Integration Plan
	Plan for the first ForgetIT release
	Preliminary plan for the other releases

	Test Environment
	Conclusions and future work
	References

