SEVENTH FRAMEWORK
PROGRAMME

& ForgetlT

www.forgetit-project.eu

ForgetIT

Concise Preservation by Combining Managed Forgetting
and Contextualized Remembering

Grant Agreement No. 600826

Deliverable D8.1

Work-package

WPS8: PoF Reference Model and Framework

Deliverable

D8.1: Integration Plan and Architectural Approach (V2 -
Amended Version)

Deliverable Leader

Francesco Gallo (EURIX)

Quality Assessor

Heiko Maus (DFKI)

Estimation of PM spent

9

Dissemination level

PU

Delivery date in Annex |

31 October 2013 (M9)

Actual delivery date

06 December 2014 (v1), 25 August 2014 (v2)

Version

v2

Revisions 10
Status Final Release
Keywords: ForgetlT Architecture, Preserve-or-Forget Framework, In-

tegration Plan, Components

ForgetlT Deliverable D8.1

Disclaimer

This document contains material, which is under copyright of individual or several ForgetIT
consortium parties, and no copying or distributing, in any form or by any means, is allowed
without the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consor-
tium warrant that the information contained in this document is suitable for use, nor that
the use of the information is free from risk, and accepts no liability for loss or damage
suffered by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for
any use that may be made of the information contained herein.

© 2014 Participants in the ForgetIT Project

Page 2 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

Changelog for version v2

With respect to version v1 (originally delivered D8.1) the following editorial changes have
been applied:

e the architecture layers have been reduced to three (Active Systems, Preserve-or-
Forget (PoF) Middleware, Preservation System), the updated diagrams are in Sec-
tion 4; the Preservation System now includes the Digital Repository (formerly re-
ferred to as the Archive) and the Cloud Storage Service, Section 2.3 has been re-
named accordingly;

e Section 5 about the integration plan has been anticipated and placed after Sec-
tion 4, a new Table in Section 5 summarizes the planned integration of the various
components for each Preserve-or-Forget (PoF) Framework release;

¢ the adoption of OAIS in the ForgetIT architecture is discussed in Section 2.3.1;

¢ the evaluation of OAIS and middleware solutions is reported in the new Section 7:
a Table containing a list of assessment criteria for OAIS platforms and the selection
of the best candidate according to the proposed criteria have been added.

Changes above have been suggested after the first annual project review.

Page 3 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

List of Authors

Partner Acronym | Authors

LUH Nattiya Kanhabua, Kaweh Djafari-Naini, Claudia Niederée

LTU Parvaneh Afrasiabi Rad, Ingemar Andersson, Goéran
Lindqvist, Jorgen Nilsson

IBM Ealan Henis, Simona Rabinovici-Cohen

DFKI Heiko Maus, Frank Steinmann

CERTH Vasileios Mezaris, Olga Papadopoulou, Vasilis Solachidis

dkd Olivier Dobberkau, Phuong Doan

USFD Mark Greenwood

EURIX Walter Allasia, Francesco Gallo, Jacopo Pellegrino

Page 4 (of 72) www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Contents

List of Authors
Contents
Executive Summary

1 Introduction

2 ForgetlIT Architecture
2.1 ActiveSystems
2.2 PoF Middleware
2.3 PreservationSystem oL
2.3.1 OAIS model in ForgetIT architecture
2.3.2 Digital Repository oL
2.3.3 Cloud Storage Service
3 Architecture Components
3.1 Active Systems: Semantic Desktop and TYPO3 CMS
3.2 Shared Components of the PoF Middleware
3.3 Middleware components supporting core ForgetlT functionality
3.4 Preservation System: Digital Repository and Cloud Storage . .
4 Architecture Diagrams and Integrated Workflows
4.1 Structure Diagrams o
4.2 Integrated Workflows
4.2.1 Workflow 1: Basic Synergetic Preservation
4.2.2 Workflow 2: Basic Managed Forgetting Support.
5 Integration Plan

5.1 Plan for the first PoF Framework release

Page 5 (of 72)

www.forgetit-project.eu

ForgetlT Deliverable D8.1

5.2 Preliminary plan for other PoF Frameworkreleases 40
5.3 Testing components and integration 40
6 Test Environment 42
7 Candidate Components for the PoF Framework 44
7.1 Digital Repository solutions oL 44
7.2 PoF Middleware Solutions 64
8 Summary and Future Work 66
Acronyms 67
References 68

Page 6 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

Executive summary

The primary objectives of WP8 are (a) to devise a reference model which comprises the
concepts and processes for the managed forgetting, the contextualized remembering and
the integrated information and preservation management (synergetic preservation), and
(b) based on this reference model, to integrate components implementing these concepts
into a technologically coherent framework, the Preserve-or-Forget (PoF) Framework.

This document describes the architecture of the PoF Framework with its main integrated
components developed by the technical WPs (WP3-WP7). The integration plan for testing
and validating the project results is described, too. The results presented in this document
have been produced within Task 8.1.

Making use of Model Driven Architecture (MDA) approach and UML notation, under the
lead of EURIX, all technical partners have worked together to establish and document
a first version of the functional specifications of the ForgetIT architecture and the corre-
sponding integration guidelines for the different components.

The architecture defined in the present document will be improved in an iterative ap-
proach, to be refined and extended during the project when new results and insight be-
come available for integration and testing.

The defined architecture includes the Active Systems, the Preservation System and the
Preserve-or-Forget (PoF) Middleware. The Active Systems represent the user applica-
tions, in this project two applications will be developed and tested: the Semantic Desktop
(WP9) and TYPO3 (WP10). The Preservation System, responsible for the preservation of
the content within the framework, is made up of a Digital Repository (WP8) and a Cloud
Storage Service (WP7), with a Storlet Engine for executing specific tasks close to the
data. Finally, the PoF Middleware provides the bridge between the Active Systems and
the Preservation System and will integrate components developed by WP3-WP6, which
implement the core ForgetlT principles.

Structural and behavioral diagrams for the overall architecture have been defined. Dy-
namic diagrams representing two priority workflows for basic managed forgetting and
synergetic preservation are provided. Based on component diagrams and descriptions,
an integration plan for the three PoF Framework releases has been outlined. The valida-
tion of the first framework prototype will be tested using the two priority workflows defined.

The implementation of the Digital Repository and the PoF Middleware will leverage, wher-
ever possible, existing solutions and technologies, which will be adapted and customized
within WP8. A preliminary assessment of OAIS solutions for the Digital Repository and
of different technologies and platforms for the PoF Middleware has been included in this
document.

Page 7 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

1 Introduction

The primary objective of WP8 is to define - in collaboration with the other technical WPs as
well as with the interdisciplinary components from WP2 - a reference model which com-
prises the concepts and processes for managed forgetting, contextualized remembering
and synergetic preservation. As support for this so-called Preserve-or-Forget (PoF) Refer-
ence Model, the second objective is to integrate the components developed in the project
into a technologically coherent framework implementing the ForgetIT model.

The present document describes the architecture of the PoF Framework and is the out-
come of Task 8.1 - Integration plan and ForgetlT architecture, whose main objective is
to ensure that (1) the components developed in WP3-WP7 work together and that (2)
the conceptual architecture for the PoF framework will be specified, including compo-
nent responsibilities, interface definitions and the foreseen interplay between components
(protocols and processes). Task 8.1 also targets the plan for the integration of software
components into the ForgetIT architecture in order to test and validate the project results.

The PoF Framework architecture discussed here currently includes the Active Systems,
the Preservation System and the PoF Middleware. The overall architecture will be refined
using an iterative approach during the project.

Two Active Systems are developed and tested in the project, namely the Semantic Desk-
top and TYPOS3. The Preservation System includes a Digital Repository and a Cloud
Storage Service (leveraging Storlet technology) for executing specific preservation tasks
close to the data. The Preservation System implements several features which are typ-
ically provided by a digital archive and is based also on the OAIS model [1]. The PoF
Middleware implements the ForgetlT intelligent preservation solution and provides the
bridge between the Active Systems and the Preservation System.

Wherever possible, the implementation of the Preservation System and PoF Middleware
will rely on existing solutions and technologies, which will be adapted and customized
within WP8. The PoF Middleware will integrate components developed by WP3-WP6 for
realizing the novel ForgetIT methods, while the cloud storage is developed in WP7.

Other project deliverables provide relevant input to the present document. In particular,
D3.1 [2] discusses the importance of managed forgetting and provides useful guidelines
for the PoF Framework. Other deliverables, such as D4.1 [3], D5.1 [4], D6.1 [5] and
D7.1 [6], describe the foundations and the state of the art for relevant topics such as infor-
mation extraction, synergetic preservation, contextualization and computational storage
services. Based on the results provided by these documents, several components will be
developed during the project lifetime, to be further integrated in the PoF Framework, as
discussed in the following.

Three releases of the PoF Framework are planned: for each component in the architecture
we provide a plan for its integration mapped to the three releases. For the first release
two priority workflows have been identified: they will be used as a reference to validate
the adopted approach with end-to-end processes, involving all components in the PoF

Page 8 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

Framework. The reference workflows used as validation of early integration are based on
D9.1 [7], which introduces the two main application use cases and scenarios, which have
been taken into account when designing the architecture.

This document also provides input to other deliverables, not only the WP8 ones: D3.2 [8],
D4.2 [9], D6.2 [10] and D7.2 [11] for the first prototypes of several components, D5.2 [12]
for a workflow model for the transition between Active Systems and the Preservation
System, based on the architecture described here.

After discussing the architecture and the integration approach, we anticipate the results of
the preliminary assessment of candidate solutions which could be used for implementing
the Middleware and the Digital Repository. The adopted solutions and their integration
will be detailed in D8.3 [13].

For the PoF Middleware, we investigated different open source solutions: based on the
results from WP5, a message oriented approach has been chosen, since this is a well
established solution for enterprise application integration.

Concerning the Digital Repository, we started from popular open source platforms based
on OAIS specification, since this is the reference in the digital preservation community.
Nevertheless, Task 8.2 will provide the PoF Reference Model, which will extend the cur-
rent OAIS specification to support ForgetIT principles (see deliverable D8.2 [14]).

Moreover, the PoF Framework will include the preservation aware storage developed by
WP?7, so the assessment of the OAIS platforms has been focused on digital repositories
and preservation platforms which, in order to implement the whole Preservation System,
could also be easily integrated with the cloud storage engine provided by WP7 .

The document is organized as follows: in Section 2 we provide an overview of the overall
architecture, with the main components, described in Section 3; in Section 4, making use
of UML notation, structural and behavioral diagrams for the PoF Framework are provided,
as well as two priority workflows for early integration; in Section 5 we discuss the inte-
gration plan for the different framework releases; in Section 6 we describe the testbed
environment for the integrated components; in Section 7 we first describe and evaluate
candidate solutions compliant to OAIS for the Digital Repository (Section 7.1) and then
provide a preliminary overview of candidate technologies for the PoF Middleware (Sec-
tion 7.2); finally, we provide a list of acronyms and abbreviations used in the document.

Page 9 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

2 ForgetiT Architecture

The architecture of the PoF Framework is the first outcome of WP8. The main purpose
was to design a system to integrate all components developed in the project into a techno-
logically coherent framework which could be used to implement the PoF Reference Model.
In order to achieve this, the expected results of each technical WP have been evaluated
and a collaborative approach has been adopted to design the overall architecture.

The method used to design the architecture is based on a Model Driven Architecture
(MDA) approach, adopting UML as the standard modeling language for designing the ar-
chitecture, from preliminary sketches to final representation, using an iterative approach.

The ForgetlT architecture is made up of three layers:
e Active Systems
e Preserve-or-Forget Middleware
e Preservation System
which are represented in Figure 1 and are shortly described in the following.

The first layer, the Active Systems, represents user applications. In the context of For-
getlT, two applications will be developed, integrated and tested: the Semantic Desktop
(WP9) and the TYPO3 CMS (WP10). These two applications are related to the main
scenarios, as already described in D9.1 [7].

The second layer is provided by the PoF Middleware, whose main purpose is to enable
seamless transition from Active Systems to the Preservation System (and vice versa)
for the synergetic preservation, and to provide the necessary functionality for support-
ing managed forgetting and contextualized remembering. The middleware provides the
integration framework for all components developed in WP3-WP6.

The third layer is the Preservation System, composed by two sub-systems: a Digital
Repository and a Cloud Storage Service. The Preservation System provides both con-
tent management and typical archive functionalities, inspired by the OAIS model [1]. In
Section 2.3.1 the motivations for this model in the ForgetlT architecture are briefly dis-
cussed.

The Preservation System is responsible for the digital preservation of the contents created
by the applications and must provide required functionalities for the synergetic preserva-
tion. The Preservation System provides not only ingest and access functionalities, but
also data management of the archived content, data curation and content storage. The
development and integration of the Digital Repository and of the Preservation System is
under the responsibility of WP8, while the cloud storage is the main outcome of WP7.

The approach adopted in ForgetIT to implement the OAIS Preservation Planning and
Archival Storage functionalities makes use of an advanced cloud storage system powered
by a Storlet engine, a mechanism to execute resource consuming tasks close to the data.

Page 10 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

The architecture components are discussed in more detail in the next Sections. The in-
formation reported for all architecture blocks clearly demonstrates that all technical WPs
will contribute to the integrated framework and that the designed architecture can accom-
modate all components in a coherent way.

The integration mechanism when moving from one layer to the next has been defined in
terms of interfaces and protocols (for some components this is still under development),
as described in Section 3 and Section 4.

An overview of the PoF architecture is depicted in Figure 1, which provides a graphical
representation of the main components with some descriptive information (components
developed during the project are shown in green, components shown in blue or cyan
belong to existing platforms which will be further developed and customized to fit with
project purposes and for integration in the overall architecture). The UML diagrams of the
architecture can be found in Section 4.

2.1 Active Systems

The PoF architecture includes two user applications which are used to validate the main
scenarios. One is a personal preservation application based on the Semantic Desktop,
developed in WP9, and the other one is an organizational preservation application based
on the TYPO3 CMS, developed in WP10 (see D9.1 [7]). Both systems are complex and
include several components, the internal details are already discussed elsewhere (see
deliverables D9.2 [15] and D10.1 [16]). In this document we focus only on the features
which are relevant for integration.

Two example workflows involving the two applications as well as functionalities of other
ForgetlT components are described in Section 4.2. Concerning the interfaces and the
integration with the other architecture components, the two applications will make use
of REST APIs provided by the PoF Middleware to notify the system about content to be
preserved and to retrieve updated content.

Both components will expose a CMIS [17] interface to allow the middleware components
to retrieve the content. The communication with the middleware is provided by application
specific adapters, which encapsulate application-specific extensions for interacting with
the PoF Middleware. The separation of functionalities that will be part of the Middleware
and those which will become part of the Active Systems is a challenging task. The details
of this separation are still under discussion.

Further details about the two Active Systems can be found in Section 3.1, where the
Semantic Desktop and TYPOS are described in detail in Table 1 and Table 2, respectively.

Page 11 (of 72) www.forgetit-project.eu

Deliverable D8.1

ForgetlT

sleuwuoy (a13|osgo)
1O UOISIBAUDD
UOIELLIOUI-B1aW
+ Uoljewuoul
panzsad
loa1epdn .
adelols
ul uopnendwo) .
auldug 3ado3s

ad8eJo35 pnop

suoneSa88y
afeuepy .
5dIV S|PUBH «
aulu3 uolizenlasaly

(sad)
S3J0ojgele(] UoIIEAIasaly

Sad yum
UOIIEDIUNWIIOT o

suonouny

Suluuelg
UoIIBAISS3Id W
1adeuey]
uol3EAIBsAIY

(ssao0y
diqg) podx3 .
{3598y
dis) vodwy .
JaBeuey adexyoey

sHpny

pue suonesadg

Aoysoday
afeuep] .
UOIELSIUIWPY o

1uawadeuesw
eleq .
Ja8euepy
Asozisoday

Atoysoday [ensig

sjuana g saFFu] .

o180 ssauisng 1ySiam yS1] .
wa1sAs anoe <>

uolEIUNWWoD Juauodwod .
SIY(0 UOIIEIIUNWIWLOT o

1adeuely uolzenlasaly
aJeme-3xazuo]y

SuiBexpedun 4ig
awafeuew ssadoid UOISSILUGNS o

walsAs uoijeAIasald

SuiSexoed dIs
13n1Y21y/10393]|0D

uollEZUEWWNS
uoia3[|0d 3Few| .
UOIIEZLIBWILINS 1X3] o
sishjeue onysinBul) sadeaqg .

JO3ESUIpUO)

(AoueAong Adowaw ‘anjea uonemasaad) uonendwod anjea Juj .

poddns UoIIeZI|ENIX3IUOI-BY

voddns uonnjoa3 .
uopendwod

B0 UORBEABSIN

1951|EN3X3IU0)

zuodwod Fuluea] auljuO «
WwawaSeusw SISIIE]S 19 SN[BA UOIEWION]| o
JUBLISSISSE SN|EA UOIIEWLIOU| o

wawadeuew A8aienns Sumadioq .
103398104

e voddns uonesinep «

juzwssasse Aljenb afew) . poddns Suxapul Julof .
Xapul aalyale yuaSi|Eau) «
poddns yaieas aueme-awi] «

UOIIDBIIXS 2UNYES) [ENSIA o
uolaeXa AJJUS paWEN .

1030B43X] lo03eSinep

*(paziwoysnd pue parosduil

aq 0} sjuauodwod buisixa :anjq ‘1osloid ay) Burinp padojanap sjuauodwod :usalb) ainjoalyoie 40d JO MIIAIBAQ :| ainbi4

-

FETVETS
Suideis

-

Aiojisoday
ejepela|y

-

1a3euey |

sfoja8esn

“83 uonewuolul
Joafueyoxy .

S| A R
UONEDIUNWIWCY »

Aoysoday sIND

e
&
F}
-
]
<
(%)
@

(ds3)sng a01A438
aslidiajul 4od

2.1ema|ppIN (40d) 128104-10-an19521d

s1uauOdWO? 2IEMB|PPIA

uonoEISIUIl
paseq—SIAD « juawaseuepy
izdepy 1955y
4od/€0dAL £0dAL
SIWD E0dAL
Jad=35 O
sdoja8esn
“83 uonewsoUl
jo aBueyoxy . dop{s2g OWId
BUEMB[PPIN YU -
UDREDIUNWIWOT) o
UDISIZAUDD SN »
1e3depy 40d/as 311901 OWId

(as) dopjsaqg anuewag

f.eu

it-projec

www.forget

Page 12 (of 72)

ForgetlT Deliverable D8.1

2.2 PoF Middleware

The main purpose of the PoF Middleware is to enable the three main principles of For-
getlT, namely a seamless transition from active systems to the archive (Synergetic Preser-
vation), a meaningful transition back to the active system (Contextualized Remembering),
support for the processes such as information value assessment required for resource
selection and forgetting (Managed Forgetting).

The PoF Middleware integrates components for feature extraction, contextualization, con-
densation and managed forgetting. Other components are associated to common tasks
and managed through the middleware bus. Examples of shared components are the
Scheduler and the ID Manager. The integration of all components into a middleware
supporting project scenarios is the main challenge for future WP8 integration activities.

The PoF Middleware will expose REST APIs to be consumed by the user applications
and will include a CMIS client to retrieve content. Furthermore, the PoF Middleware
includes components for importing and exporting content into and from the Preservation
System. The PoF Middleware will be able to properly package the content and associated
metadata into a format which is compliant to what is expected by the Preservation System.

Several approaches and technologies are available in the literature and also in the IT
marketplace to implement complex middleware infrastructures for enterprise applications.
The analysis of the most appropriate approach for the middleware component and for the
transition between the Active Systems and the Preservation System is reported in deliv-
erable D5.2 [12]. Here we just point out that the PoF Middleware must satisfy different
requirements, such as flexibility for the integration of heterogeneous components and the
capability to ease the communication among the components, implementing the concept
of middleware bus. In addition to this, the middleware should enable the implementation
of complex workflows corresponding to the core ForgetlT principles. The implementation
of a Message Oriented Middleware (MOM) [18] seems to be a promising and well estab-
lished approach to fulfill such requirements and will be discussed in deliverable D5.2 [12].
We provide a quick overview of popular middleware solutions in Section 7.2, their evalu-
ation is still in progress. The solution adopted for the first release of the PoF Framework
will be described in deliverable D8.3 [13].

2.3 Preservation System

The Preservation System is responsible for the preservation of digital content created
by the Active Systems and provides the required functionalities enabling the synergetic
preservation, for the smooth transition of content from the archive to the applications.
The Preservation System exposes different APIs for ingest and access, depending on the
actual implementation and must support the PoF Reference Model.

The Preservation System is also referred to as Archival Information System (AIS) in other
project documents, to point out the content archival functionalities, although, as already

Page 13 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

stated, in the specific context of ForgetlT we need to go beyond the usual definition of
archive based on OAIS specification and adopted in other digital preservation communi-
ties (see deliverable D8.2 [14]).

The Preservation System is composed by two integrated systems, a Digital Repository
and the Cloud Storage System developed within WP7, described in the following Sections
after shortly discussing the role of OAIS in the PoF architecture.

2.3.1 OAIS model in ForgetIT architecture

OAIS is currently the most recognizable conceptualization of a digital preservation sys-
tem. Several initiatives and projects have promoted the adoption of OAIS concepts and
terminology, which is often used in the digital preservation community as a conceptual
model for discussion and comparison and is widely accepted as the reference standard
for implementing digital preservation platforms (all main preservation solutions available,
both commercial and open source, claim their compliance to OAIS). It is worth noting
that OAIS does not endorse or recommend a specific implementation on any level and
the specification itself allows additional services beyond those required, as well as an
extensible information model.

For these reasons we included OAIS (and an OAIS comliant system) into the PoF Frame-
work architecture to represent the core presrevation functionality. OAIS provides a func-
tional model and a information model, and both of them will be evaluated during the project
to define a new reference model going beyond the boundaries of OAIS (see deliverable
D8.2 [14]).

The OAIS functional model is depicted in Figure 2. OAIS functional entities include Ingest,
Access, Data Management, Administration, Preservation Planning and Archival Stor-
age [1]. In the specific context of ForgetIT, Archival Storage is implemented by the Cloud
Storage Service. Preservation Planning is also partially implemented by the cloud stor-
age, which is actually a preservation aware storage system. Ingest and Access provide
additional features related to the specific ForgetlT core principles, e.g. contextualization.

In addition to defining the parties involved in the long-term preservation of digital materi-
als, OAIS provides also an information model for managing the digital materials as they
pass through the system. A significant component of this model is the Information Pack-
age (IP). Each IP consists of the digital object(s) to be preserved, the required metadata
and the Packaging Information which relates content and metadata (see [1]).

OAIS outlines three types of Information Package: Submission Information Package (SIP),
Archival Information Package (AIP) and Dissemination Information Package (DIP). SIP
and DIP are external to the archive and refer to the producer and consumer, respectively.
AlP is internal to the archive.

In ForgetlIT, the Active Systems (via the PoF Middleware) act both as producers and as
consumers. It is common practice to adopt the same representation for SIP, AIP, and DIP

Page 14 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

__— Preservation Planning ~_
>] | C
Descriptive i (Descripti_ve o
R Information /| Data Informatmn. . &
0 o ueries
Management \ i q y
D I ¢ 1 query responses
U sip EE ; : Access _orders u
C I | Archival M
.] —
AIP .
E : _ : | Sto:age 1 AIP : oIP) E
R] . | ! : R
- - -)
B Administration —

MANAGEMENT

Figure 2: OAIS functional entities [1].

(e.g. several platforms use METS [19] as XML wrapper for the three of them, but this is
not mandatory).

The SIP definition for ForgetlT is part of WP5 activities (see deliverables D5.1 [4] and
D5.2 [12]), and has been taken into account for the implementation of PoF Middleware
components responsible for content packaging.

2.3.2 Digital Repository

In the PoF Framework, the main role of the Digital Repository is to manage the content
produced by the user applications, providing also additional archival features in coopera-
tion with the Cloud Storage Service, exposing interfaces to import and retrieve content.

A Digital Repository is typically a software application for managing digital content and
delivering the content to its consumer in convenient ways, it can be a single platform
or even a set of applications. Several implementations exist, providing general purpose
repository systems, supporting a variety of multimedia contents and usually embedding a
suite of applications to support different needs of the users.

It is worth noting that the meaning of the term digital repository is widely debated and also
the common understanding changed over time, from an initial focus on software systems
to a wider and overall commitment to the stewardship of digital materials, which requires
not just software and hardware, but also policies, processes, services, and people, as well

Page 15 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

as content and metadata. Moreover, the terms digital repository and archive are often
used interchangeably. OAIS uses the term archive when referring to an organization that
intends to preserve information for access and use by a so-called Designated Community,
while ISO 16363:2012 standard - Audit and certification of trustworthy digital repositories,
based on another CCSDS specification [20], prefers the term digital repository instead.

For the Digital Repository implementation, it is planned to rely on existing solutions. A list
of candidate solutions is discussed in Section 7.1.

Further details about the Digital Repository functionalities and the role in the ForgetlT
architecture can be found in Table 13.

2.3.3 Cloud Storage Service

Cloud storage services are growing in use and popularity, for both personal and business
applications. Digital repositories often support cloud storage as one of the different stor-
age options to backup and restore the digital contents. In the context of ForgetlT, the
cloud storage system is used not only for storing digital contents, but also to perform spe-
cific tasks close to the data. This new paradigm is based on the concept of preservation
aware storage and is discussed in deliverable D7.1 [6].

The Cloud Storage Service integrated in the ForgetlT platform is based on Preservation
DataStores (PDS) and OpenStack Swift [21], discussed in deliverable D7.1 [6], provides
storage resources for AlIPs but also a Storlet engine for executing specific operations
close to the data, i.e. future processing steps can be done in the archive without requiring
to extract it to a server and put it back into the archive.

These tasks can include different content transformations, such as format migration, other
resource consuming tasks, such as integrity checks as well as operations for enabling
managed forgetting within the archive and operations for supporting context evolution for
archived content.

Further information about the Cloud Storage Service can be found in Table 14, including
details related to the internal components and the technologies adopted for the imple-
mentation.

Page 16 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

3 Architecture Components

In this Section we describe the components of the overall architecture, split into three main
blocks (Active Systems, PoF Middleware and Preservation System), as already discussed
in Section 2. The overview of the PoF Framework is depicted in Figure 1, while the
component diagram of the PoF Framework is shown in Figure 4.

The PoF Middleware components are divided into (a) shared components (performing
common tasks) and (b) components implementing the core ForgetlT functionalities. Mid-
dleware components are managed through a Enterprise Service Bus (ESB) [18]: this is
particularly relevant for components responsible for common tasks and is highlighted in
Figure 1 and Figure 4. In the ForgetIT architecture, the ESB provides the communication
layer for all components in the PoF Middleware, reducing the number of point-to-point
connections between communicating applications [18].

For each component a fact sheet is provided, describing main expected functionalities
and focusing on information which is relevant for the integration.

3.1 Active Systems: Semantic Desktop and TYPO3 CMS

The Semantic Desktop and the TYPO3 CMS are described in detail in WP9 and WP10
deliverables. Here we focus only on the internal components relevant to the integration
along with the application-specific adapters. The main features of the two systems are
summarized in Table 1 and Table 2.

3.2 Shared Components of the PoF Middleware

The PoF Middleware integrates several components. We identified four shared compo-
nents, which are responsible for general tasks managed by the middleware bus:

e Metadata Repository (see Table 3)
e ID Manager (see Table 4)
e Scheduler (see Table 5)

e Context—aware Preservation Manager (see Table 6)

The components above can be used by other components for processes internal to the
PoF Middleware or can provide functionalities used by the other layers: for example the
ID Manager provides the mapping for all different identifiers associated to resources
to be properly managed by the applications or by the Preservation System, while the
Scheduler manages the different asynchronous activities which are executed in the
PoF Middleware, activating specific workflows and tasks.

Page 17 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

3.3 Middleware components supporting core ForgetIT functionality

In addition to the shared components, the PoF Middleware contains six other components,
which implement core ForgetIT functionality (see Figure 1):

e Forgettor (see Table 7)

e Extractor (see Table 8)

e Condensator (see Table 9)

e Contextualizer (see Table 10)

e Navigator (see Table 11)

e Collector/Archiver (see Table 12)

Together with the Preservation System these components implement the three core For-
getlT principles of managed forgetting, contextualized remembering and synergetic preser-
vation. For each component we describe the main features in a separate Table.

The integration of the components above leverages the ESB approach for the communi-
cation, adopting standardized interfaces and protocols for sharing information within the
PoF Middleware. ESB provides several benefits, such as loose coupling among compo-
nents, flexibility, scalability from point-solutions to enterprise-wide deployment, support
for multi-protocol communication. For a detailed discussion see [18].

3.4 Preservation System: Digital Repository and Cloud Storage

The two sub-systems which constitute the Preservation System are described here sep-
arately. While the Cloud Storage Service will be developed within WP7, for the Digital
Repository an existing solution will be adopted, since several open source implemen-
tations are already available and are supported by a large number of institutions and
archives.

The Digital Repository, assumed to be compliant to the OAIS model but also supporting
its extension in ForgetlT, is described in Table 13. The Cloud Storage System, providing
a preservation aware storage, is described in Table 14. Together they implement the long
term digital preservation of ForgetlT contents, empowered with specific functionalities to
support smooth transition from and to the user applications through the PoF Middleware.

Page 18 (of 72) www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name

Semantic Desktop

Partner Responsible

DFKI

Contributing Partners

Work Packages

WP9, WP3, WP4, WP5, WP8

Reference Deliverables

D9.2, D9.3, D9.4

Current Status

Prototype is available.

Short description and role

The Semantic Desktop is a personal information management system with
an underlying ontology semantically describing the user’s mental model
and the resources involved. This ontology is the Personal Information
Model (PIMO). The Semantic Desktop infrastructure consists of a PIMO
Server with a dedicated API so that any third party could use the PIMO for
own purposes (e.g., using it as tagging vocabulary). In addition, a com-
bination of plug-ins for (some) standard applications as well as dedicated
components/Ul for specific purposes (such as task management, photo col-
lection) is provided. In ForgetlT the Semantic Desktop serves as a means
to learn about user’s resources, their usage over time, importance, interre-
lations, and context for each resource from the PIMO. Once the ForgetIT
services are combined with the Semantic Desktop infrastructure, synergetic
preservation is realized with nearly no additional effort. The PIMO will also
provide context information for realizing contextual remembering as well as
means for contributing to managed forgetting. The infrastructure will be en-
hanced with several ForgetlT services such as image quality assessment
or text condensation.

Delivery Mode

Platform running in application server on dedicated virtual machine.

Subcomponents

PIMO Server, PIMO desktop clients, specific plug-ins for applications,
HTML5 mobile client, User Observation Hub (UOH)

Main APls, input and out-
put formats

PIMO API description available in documentation, JSON RPC is used.

Plan for integration at M18

Platform connected to PoF Middleware; initial workflows are served.

Plan for integration at
M27/M36

Iterative enhancement of interplay with PoF Middleware; concise preserv-
ing desktop client (M27); concise preserving mobile client (M36).

Language, runtime frame-
work

Server: Java, JSP, Apache Tomcat, MySQL; Desktop: Java, HTML5
(JavaScript, CSS); Mobile App: HTML5

SW and HW Require-
ments

The Semantic Desktop can be deployed on a VM.

Dataset for testing

Stainer data set; 24/7 instance at DFKI (live usage); test instance for For-
getlT; cloning of PIMOs possible

License BSD-compliant license for interfaces and PIMO model; implementation free
use in ForgetlT
Notes The prototype and some documentation can be found at https://pimo.

kl.dfki.de.

Table 1: Semantic Desktop (Active System, WP9)

Page 19 (of 72)

www.forgetit-project.eu

https://pimo.kl.dfki.de
https://pimo.kl.dfki.de

ForgetlT

Deliverable D8.1

Component Name

TYPO3 CMS

Partner Responsible

dkd

Contributing Partners

Work Packages

WP10, WP8, WP9

Reference Deliverables

D9.1, D10.1,D10.2, D10.3

Current Status

Design of pilot applications; evaluation of standards to be used; CMIS
server for testing under development.

Short description and role

TYPOS is an enterprise-class, open source CMS, used internationally to
build and manage websites of all types, from small sites for non-profits to
multilingual enterprise solutions for large corporations. TYPOS3 is a user-
friendly, intuitive tool for producing and maintaining web pages with just a
few clicks of the mouse. Authors benefit from the full-featured rich-text edi-
tor that offers all of the formatting options they would need in a WYSIWYG
tool with a familiar Word processor-like interface. Seamless integration of
multimedia content and dynamic image manipulation are available right out
of the box in TYPOS. In addition, an internal messaging and workflow sys-
tem helps content creators and editors to collaborate in the administration
back-end. TYPO3 provides an extremely detailed permissions system for
implementing professional editing workflows for both users and groups. Ad-
ministrators can even manage multiple websites in one TYPO3 installation
and share users, extensions, and content between them.

Delivery Mode

Release in an agile approach, CMIS server published with Alfresco.

Subcomponents

CMIS, Semantic Annotations, ForgetlT TYPO3 Extensions (Content Dash-
board, Metadata Directory, Semantic Layer, ForgetIT module, Feedback
and Conflicts Module, Recycle and Inducing Module, CMIS).

Main APls, input and out-
put formats

CMIS, REST, OWL

Plan for integration at M18

Application connected to PoF Middleware; initial workflows are served; de-
velopment according to evaluation plan (WP10).

Plan for
M27/M36

integration at

Release of the pilot application with the ForgetlT TYPO3 Extensions and
the integrated components (CMIS Client/Server and Semantic Services).

Language, runtime frame-
work

TYPO3 CMS 6.2 LTS

SW and HW Require-
ments

Requirements for SW and HW available in the project doc-
umentation (http://typo3.org/about/typo3—-the-cms/
system-requirements)

Dataset for testing

(1) Approved Spielwarenmesse Press Release (2) Testbed including multi
domains in TYPO3 (3) Any other press releases and content consisting of
text and media assets created in testbed.

License

GPL

Notes

Source code available on project repository [22]

Table 2: TYPO3 CMS (Active System, WP10)

Page 20 (of 72)

www.forgetit-project.eu

http://typo3.org/about/typo3-the-cms/system-requirements
http://typo3.org/about/typo3-the-cms/system-requirements

ForgetlT

Deliverable D8.1

Component Name

Metadata Repository

Partner Responsible

EURIX

Contributing Partners

LUH, USFD, CERTH, LTU

Work Packages WP8, WP3, WP4, WP6, WP5
Reference Deliver- | D8.3, D8.4
ables

Current Status

Started component design.

Short description and
role

Component that manages metadata extracted or computed for individual docu-
ments and collections and makes them available for other components. This, for
example, includes extracted entities, context information or memory buoyancy
and preservation values. The Metadata Repository relies on the fact that all
resources can be identified by an unique ID, which enables the retrieval of meta-
data stored in the repository for a resource. The repository might also include
pointers to summaries for individual documents and/or document collections.

Delivery Mode

REST service

Subcomponents

Metadata storage, component for access/search support.

Main APls, input and
output formats

Main methods include storage of new metadata for a resource, deletion of meta-
data for a resource, access to specific types of metadata given a resource and
search in the Metadata Repository.

Plan for integration at
M18

Basic implementation according to the implemented scenarios, to support inte-
gration in the PoF Middleware.

Plan for integration at
M27/M36

Improvements and extensions of the repository.

Language, runtime | Not decided yet, maybe re-use existing open source component and integrate it
framework into the PoF Middleware.

SW and HW Re- | Requires database for managing the metadata (indexing and search).
quirements

Dataset for testing

Some simple test cases should be sufficient for evaluating prototype.

License

Open source, if not otherwise implied by using an existing component.

Table 3: Metadata Repository (PoF Middleware, Shared Component, WP8)

Page 21 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name

ID Manager

Partner Responsible

LUH

Contributing Partners

EURIX, dkd, DFKI

Work Packages WP8, WP5, WP9 (ID formats), WP10 (ID formats)
Reference Deliver- | D8.3, D5.2
ables

Current Status

Started implementation of first prototype.

Short description and
role

This component mediates between the IDs used in the Preservation System
(both in the Digital Repository and in the Cloud Storage Service) and the IDs
used in the Active Systems. It might also be used to acquire new unique IDs.

Delivery Mode

REST service or standalone software library.

Subcomponents

ID Repository, ID Generator

Main APls, input and
output formats

Main methods include generation of new ID and retrieval of IDs from a repository.
Different standards can be used, such as UUID.

Plan for integration at
M18

Basic implementation according to the implemented scenarios, to support inte-
gration for the priority workflows.

Plan for integration at
M27/M36

Maybe improvements and extensions if necessary, to support additional require-
ments.

Language, runtime

framework

Not decided yet, maybe re-use existing open source component to be inte-
grated in the PoF Middleware. Possible candidate is ObjectDB [23], native object
database written in Java with embedded ID generator.

SW and HW Re-
quirements

Requires database for managing the IDs.

Dataset for testing

Some simple test cases should be sufficient

License

Open source, if not otherwise implied by using an existing component

Table 4:

ID Manager (PoF Middleware, Shared Component, WP8)

Page 22 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name Scheduler

Partner Responsible | EURIX

Contributing Partners | LUH, LTU

Work Packages WP8, WP3 (scheduling of forgetting process), WP5 (scheduling of archiving pro-
cess)

Reference Deliver- | D8.3, D8.4

ables

Current Status

Started development of first prototype.

Short description and
role

Component that starts processes such as the forgetting process or an archiving
process based on a defined schedule (e.g. once a day) or based on events, for
which it is listening, plus additional conditions.

Delivery Mode

Active component, triggers other components and processes. Depending on
PoF Middleware implementation, the Scheduler should be a running process,
listening for specific triggering events.

Subcomponents

Scheduling queue, event management, business logic for event processing.

Main APIs, input and
output formats

API that allows the scheduling of processes based on time and events, API for
requesting status information, API for deletion of scheduled events.

Plan for integration at
M18

Basic implementation for processing of simple events or for basic time-based
scheduling of processes and tasks.

Plan for integration at
M27/M36

Improvements and extensions, integration with PoF Middleware communication
layer (ESB) supporting complex workflows.

Language, runtime | Not decided yet, maybe re-use existing open source component to be integrated
framework in the PoF Middleware.

SW and HW Re- | Not yet specified, depending on the actual implementation.

quirements

Dataset for testing

Some scheduling test cases based on priority workflows.

License

Open source, if not otherwise implied by using an existing component.

Table 5: Scheduler (PoF Middleware, Shared Component, WP8)

Page 23 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name

Context-Aware Preservation Manager

Partner Responsible | LTU

Contributing Partners | EURIX, dkd, DFKI, TT, IBM
Work Packages WP5, WP8, WP6
Reference Deliver- | D5.3

ables

Current Status

Started design of the component.

Short description and
role

The function of the Preservation Planning entity, and to some extent the Admin-
istration entity, in the Preservation System) need to be stretched out to meet the
Active Systems (and their owners). Some of it is available through other com-
ponents in the PoF Middleware, but there still exists a need to handle changes
on both sides of the PoF Middleware, which includes enabling communication of
events and triggers relevant for both the Preservation System and the (owners
of the) Active Systems. As an example, the Preservation System has internal
preservation plans which might include transformation of classes of objects at
ingest, if the objects are in unsuitable formats. These default transformations
need to be communicated to the Active Systems. This may be communicated
already at (or before) initial ingest of the first object of a specific type, since these
plans are known beforehand. As another example, the Preservation System is
responsible for preservation of the objects for long term, but the PoF Framework
must be able to re-contextualize the objects into Active Systems. This means
that when the Preservation System makes a decision to transform a class of ob-
jects, this must be communicated to the Active System and its owners. If this
transformation would ruin the chances of re-contextualization, e.g. by deleting
the original object, some actions need to be taken to ensure the possibility of re-
contextualization (e.g. transformation to another format for re-contextualization).

Delivery Mode

REST service

Subcomponents

Event logger

Main APls, input and
output formats

REST APIs under definition, supporting JSON and XML formats.

Plan for integration at
M18

Transmission of simple events between Active System and Preservation System,
not targeted for first PoF Framework prototype.

Plan for integration at
M27/M36

Development and integration of first prototype, communicate changes in Preser-
vation System and Active Systems, regarding e.g. information structure.

Language, runtime | Java/J2EE, Java Application Server/Tomcat
framework

SW and HW Re- | Linux OS, other requirements not available yet.
quirements

Dataset for testing

Create ad-hoc dataset, e.g. descriptions of transformation events using JSON
or XML, to be processed by this component.

License

Open source license

Table 6: Context-Aware Preservation Manager (PoF Middleware, Shared Component, WP5)

Page 24 (of 72)

www.forgetit-project.eu

ForgetlT Deliverable D8.1
Component Name Forgettor
Partner Responsible | LUH
Contributing Partners | DFKI

Work Packages WP3 , WP9 (requirements and APIs), WP10 (requirements and APIs)
Reference Deliver- | D3.2, D3.3, D3.4
ables

Current Status

Preliminary prototype under development.

Short description and
role

This component is managing the forgetting process. It computes the Preserva-
tion Value (PV) and Memory Buoyancy (MB) for resources based on information
provided by the Active System for this computation such as usage information,
context information and creator as well as based on the previous MB and PV
values, statistics and defined strategies and rules. The results of the Forget-
tor component will be made accessible for the Active System via the Metadata
Repository. It is planned that the Forgettor is activated on a regular basis. For
this purpose it interacts with the Scheduler.

Delivery Mode

REST service

Subcomponents

(1) Assessor: the Assessor calculates values for current information value as-
sessment of a resource, especially MB and PV. It takes into account different
forgetting strategies as well as the previous values and statistics from the last
computation. (2) Strategy Manager (database): different forgetting strategies
and rules are managed here. (3) Statistics/Value Repository (database): stor-
ing all the values computed for information value assessment (including MB and
PV) and statistics and using it for computing new values. (4) Analyzer: used for
classifying resources based on a strategy and the values computed in Assessor
and statistics.

Main APIs, input and
output formats

Input: resource IDs and metadata associated with the resource (mainly informa-
tion on resource usage and resource context). The metadata should be a flexible
data-structure, e.g. key-value pairs, so that it can be extended for different cases.
Output: computed MB and PV values together with classification in more high
level classes (e.g. "to be preserved” or "low importance”); these will be used to
update the respective information in the Metadata Repository to make the most
current values available for the Active System. It is still under discussion if the
Forgettor also informs the Scheduler or the Active System about the completion
of the computation (e.g. via event listeners).

Plan for integration at
M18

A first simple version of the Forgettor with a simple function for computing MB.

Plan for integration at
M27/M36

Intermediate and final release of the overall Forgettor.

Language, runtime | Java

framework

SW and HW Re- | Database for storing historical values.
quirements

Dataset for testing

Usage logs and other usage information from the user applications.

License

Open source

Table 7: Forgettor (PoF Middleware, Core Component, WP3)

Page 25 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name Extractor
Partner Responsible | CERTH
Contributing Partners | USFD, TT

Work Packages WP4, WP8
Deliverables D4.2, D4.3, D4.4

Current Status

Preliminary prototype under development.

Short description and
role

The Extractor takes as input the original media items (e.g. a text, a collection of
texts, or a collection of images) and extracts information that is potentially useful
not only for the subsequent execution of the Condensator, but also for other
components or functionalities of the overall PoF Framework (e.g. for search).
This extracted information constitutes the Extractor’s output, and will be provided
in simple text or XML files (to be decided, depending on what is most convenient
for integration, there is some flexibility). We envisage the Extractor to include
subcomponents that will perform the following tasks:(1) named entity extraction
from text, (2) tokenization, (3) visual feature extraction from images, (4) concept
detection in images, (5) image visual quality assessment. The Extractor could
be either a command line tool or a REST service (both options seem feasible).

Delivery Mode

Command line tool or REST service.

Subcomponents

(1) Named entity extraction from text, (2) Tokenization, (3) Visual feature ex-
traction from images, (4) Concept detection in images, (5) Image visual quality
assessment.

Main APls, input and
output formats

Input: one text file or a collection of text files or a collection of images. Output:
plain text or XML files with analysis results.

Plan for integration at
M18

A first release of the overall Extractor, integrating most of its subcomponents, as
part of D4.2 [9].

Plan for integration at
M27/M36

Intermediate and final release of the overall Extractor.

Language, runtime | Matlab/Octave, C++ executables/binaries which require OpenCV libraries
framework (.dll/.s0).
SW and HW Re- | Operating System: Windows or Linux OS required, Matlab/Octave, NVIDIA GPU
quirements desirable.

Dataset for testing

(1) Travel of two colleagues to Edinburgh 2013, (2) travel pictures from CostaRica
2013 dataset, (3) a dataset of about one thousand images has been assembled
and experiments are being run for blur detection, (4) other external datasets (e.g.
TRECVID).

License

BSD license (compliant with OpenCV), license for GPU_SURF and SURF imple-
mentation (an application of SURF algorithm is patented in the US), license for
LIBLINEAR Project software.

Table 8: Extractor (PoF Middleware, Core Component, WP4)

Page 26 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name Condensator
Partner Responsible | CERTH
Contributing Partners | USFD, TT

Work Packages WP4, WP8
Reference Deliver- | D4.2, D4.3, D4.4
ables

Current Status

First prototype under development.

Short description and
role

The Condensator will get as input the Extractor’s output and possibly also the
original media items that were processed in order to generate this output (or a
subset of these media items). Based on this input, the Condensator will perform
further text and image analysis tasks whose results are specific to the conden-
sation process and thus of no need to other parts of the PoF Framework, and
will use all the available analysis results for performing text and image collection
condensation. No feedback loop from the Condensator back to the Extractor
is foreseen (thus, the Condensator can only be called after the Extractor has
been executed for the same data, and the Condensator’s results will not be fed
in any way back to the Extractor). The final output of the Condensator will be
the condensed (i.e., summarized) media items or collections, or pointers to them
(depending on media item modality and on what is more convenient for integra-
tion, to be decided at a later stage). Any other analysis results generated within
the Condensator for the purpose of supporting the generation of the condensed
media collections most probably will not be returned to the framework (since, by
definition, these are only intermediate results useful for condensation; otherwise,
their extraction would be part of the Extractor). We envisage the Condensator to
include subcomponents that will perform the following tasks: (1) deeper linguis-
tic analysis, (2) text summarization, (3) face detection and clustering, (4) image
collection summarization. The Condensator could be either a command line tool
or a REST service (both options seem feasible).

Delivery Mode

Command line tool or REST service.

Subcomponents

(1) deeper linguistic analysis, (2) text summarization, (3) face detection and clus-
tering, (4) image collection summarization

Main APIs, input and
output formats

Input: the output of the Extractor, which is plain text or XML files with analysis
results, and the original text and image items, Output: text files, image files and
plain text or XML files with analysis results

Plan for integration at
M18

A first release of the overall Condensator, integrating most of its subcomponents,
as part of deliverable D4.2 [9].

Plan for integration at
M27/M36

Intermediate and final release of the overall Condensator.

Language, runtime | Matlab/Octave, C++ executables/binaries which require OpenCV libraries
framework (.dll/.s0).

SW and HW Re- | Operating System: Windows or Linux, Matlab/Octave

quirements

Dataset for testing

(1) travel of two colleagues to Edinburgh 2013, (2) travel pictures from CostaRica
2013 dataset, (3) other external datasets (e.g. TRECVID)

License

BSD license (compliant with OpenCV)

Table 9: Condensator (PoF Middleware, Core Component, WP4)

Page 27 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name

Contextualizer

Partner Responsible | USFD
Contributing Partners | LUH, CERTH
Work Packages WP6, WP8
Deliverables D6.1, D6.2, D8.3

Current Status

First prototype under development.

Short description and
role

The Contextualizer will embrace different subfunctionalities including as its core
functionality the equipment of information objects with sufficient context informa-
tion for their long-term interpretation and use, taking as input the original media
items (e.g. images, text, etc.) as well as the output of the Extractor and Con-
densator. Furthermore, it might also use external data sources for enriching the
context information (e.g. Wikipedia, or other pictures for the same event). This
information will be used to determine the context required to unambiguously de-
scribe the input media and is likely to be defined with reference to an ontology;
either large public ontologies, such as DBpedia, Freebase etc., or private on-
tologies from the PIMO etc. Storing a complete copy of an ontology with each
preservation package is likely to be highly inefficient, and so this component will
also be responsible for determining the minimum context that can be stored with-
out loss of information. It will also interact with the Collector/Archiver for prepar-
ing the context information for packaging. Contextualization will be triggered by
the intend to archive an individual information object or a set of information ob-
jects. The exact nature of the Contextualizer is likely to differ dependent upon
the media type. The exact formatting of the context has yet to be formalized
although most tools will output XML encoded data. Furthermore, it will also be
responsible for reflecting evolution in the Active System (and the world) into the
stored context information, in order to keep the information objects as well as
the context information useful and understandable on the long run. This requires
mechanisms to get informed about major changes in the Active Systems (e.g. in
the ontology). Furthermore, it has to be identified which stored contexts are ef-
fected by these changes and change has to be represented and propagated into
the Preservation System. For bringing information objects back into active use,
a mechanism is required to apply the encoded change to the context information
and/or to use them for integrating the information object into the current context
(re-contextualization). This might also require using external resources or or-
ganizational information, if the captured context information is not sufficient. A
further type of change affecting understandability is terminology evolution, which
has to be detected and reflected in the context, in order to keep things findable.

Delivery Mode

REST service, initially a command line tool.

Subcomponents

Different components for text versus images etc., components for contextualiza-
tion and re-contextualization.

Main APls, input and
output formats

REST service, definition of interfaces and response formats is in progress.

Plan for integration at
M18

Basic component (separate components for different media types).

Plan for integration at
M27/M36

A more integrated component with advanced functionality.

Language, runtime | Java, C++
framework

SW and HW Re- | Linux OS required.
quirements

Dataset for testing

Not decided yet, probably user experiments.

License

Released by USFD under LGPL.

Table 10:

Contextualizer (PoF Middleware, Core Component, WP6)

Page 28 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name Navigator
Partner Responsible | USFD
Contributing Partners | EURIX, LUH
Work Packages WP6, WP8
Reference Deliver- | D6.2, D8.4
ables

Current Status

Started component design

Short description and
role

Itis likely that the Navigator component will be highly integrated into the use case
tools and as yet the form it will take has not been fully defined. The component
will, however, be responsible for allowing users to see preserved items in their
context (both the context at the time of preservation and at retrieval) and allow
the navigation of the archived content in the Preservation System via links to
other items via shared context links (i.e. a photo collection of a trip to Edinburgh
in 2013 would share a context with a diary about a trip to Edinburgh in 2016).
It is envisaged that an initial version of this component will focus on providing a
search interface across both active and archived information, with later versions
incorporating more ideas around context navigation. Such a component would
require access to both active and preserved content and may need to be de-
ployed within use case tools and the Preservation System (as a Storlet) as well
as within the PoF Middleware to make navigation feasible within sensible time
constraints. This requires support for a shared index or a method for combining
the results from two indexes into a meaningful way. For the ranking, a time-aware
search support is required, which favors information objects in active use over
information objects from the Preservation System.

Delivery Mode

REST service

Subcomponents

Index management, time-aware search support, context navigation support.

Main APIs, input and
output formats

REST service, definition of interfaces and response formats is in progress.

Plan for integration at
M18

A basic component for early testing.

Plan for integration at
M27/M36

Advanced features depending on implemented scenarios.

Language, runtime | Not decided yet, depends on actual implementation and deployment.
framework

SW and HW Re- | Linux OS required.

quirements

Dataset for testing

Not specified yet, probably user experiments.

License

Released by USFD under LGPL.

Table 11: Navigator (PoF Middleware, Core Component, WP6)

Page 29 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name

Collector/Archiver

Partner Responsible

LTU

Contributing Partners

dkd, DFKI, EURIX

Work Packages WP5, WP8 (SIP format), WP9 (CMIS client), WP10 (CMIS client)
Reference Deliver- | D5.2, D5.3, D5.4
ables

Current Status

Preliminary prototype under development.

Short description and
role

Triggered by an event (either generated in the PoF Middleware or after a request
from user applications), this component contacts the Active Systems and col-
lects data objects that should be preserved, then prepares and submits them to
the Preservation System by packaging the data objects together with relevant
metadata (into a SIP). The component receives a preservation request. Acting
on that request, the Collector fetches the object and metadata from provided ref-
erence, via the CMIS interface of the Active System. The Collector notifies the
ID Manager with the CMIS ID (GUID) of the object, and notifies the PoF Mid-
dleware bus that an object has been collected. Before a SIP can be created,
other PoF Middleware components, such as the Extractor and the Condensator,
need to process the object and extract relevant metadata and other characteris-
tics needed for the forgetting process. This metadata is stored in the Metadata
Repository, and on a trigger from the PoF Middleware bus, the Archiver fetches
metadata and prepares the package and submits it to the Preservation System.
There are at least two options here: (1) the Archiver sends a reference to where
the Preservation System can fetch the package; (2) the Archiver sends the pack-
age to the ingest folder of the Preservation System. In response to the submis-
sion, the Archiver needs an "archive ID” that should be sent to the ID Manager.
The Collector/Archiver is also responsible for restructuring DIP into a package
that the Active System can handle to get the information back into active use.
As a response to a trigger, that can come from the Active System, or from PoF
Middleware internal components (e.g. the Scheduler), a request is made to the
Preservation System for a DIP. The DIP is then disassembled and restructured
(if needed) for adoption in the Active System. This may include restructuring of
metadata in order to facilitate ingest into the Active System. Transformation of
content objects is not considered to be a part of this functional entity. Communi-
cation will chiefly be with Active Systems, and with the Preservation system.

Delivery Mode

Command line tool or REST service.

Subcomponents

Packager, Metadata extractor, Hash generator/checker, CMIS client.

Main APIs, input and
output formats

REST APIs supporting different input/output formats and protocols: AtomPub,
CMIS, custom ForgetlT XML schema, TAR package (SIP/DIP).

Plan for integration at
M18

Ingest workflow in place with basic functionality; simple re-contextualization of
DIP into Active System.

Plan for integration at
M27/M36

Continued development of ingest workflow, and in particular re-contextualization.
Final component available at M36.

Language, runtime | Java/J2EE, Java Application Server/Tomcat.
framework

SW and HW Re- | Linux OS required.

quirements

Dataset for testing

Example data from user applications, retrieved with CMIS protocol and used to
prepare SIP.

License

Not yet available, possibly open source.

Notes

Dependencies: Condensator, Extractor, Contextualizer (i.e. Metadata Reposi-
tory) for metadata. Communicates with PoF Framework adapters in the Active
Systems and in the Preservation System.

Table 12: Collector/Archiver (PoF Middleware, Core Component, WP5)

Page 30 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name

Digital Repository

Partner Responsible | EURIX
Contributing Partners

Work Packages wP8

Reference Deliver- | D8.3, D8.4, D8.6
ables

Current Status

Stable solution available, to be customized for minor changes.

Short description and
role

The Digital Repository is responsible for organizing digital content received from
producers and for delivering such content to consumers in convenient ways. The
Digital Repository has to manage the content produced by the Active Systems,
providing also archival functionalities, exposing interfaces to import and retrieve
ForgetIT content during synergetic preservation processes. The Digital Reposi-
tory integrates with the Cloud Storage Service, making up the Preservation Sys-
tem. Since it acts also as an archive, it should be compliant to the OAIS func-
tional model, implementing the main functional entities (/ngest, Access, Preser-
vation Planning, Data Management, Administration and Archival Storage). The
Digital Repository should support the packaging model selected in the project,
exposing REST APIs for ingest and access, with internal workflow engine. Con-
cerning access, basic search (using AIP identifiers or simple descriptive meta-
data) is required. Advanced search is provided by other PoF Middleware com-
ponents. The customization of the archive will include the development of an
adapter to integrate the PDS.

Delivery Mode

Platform running in application server on dedicated machine.

Subcomponents

Ingest, Access, Data Management, Preservation Management (Preservation
Planning and Administration), Archival Storage (interface to Cloud Storage Ser-
vice). OAIS functional entities will be extended to support ForgetlT principles
(see deliverable D8.2 [14]): for example Ingest and Access also associated to
de-contextualization and re-contextualization; deletion of archived content either
permanently or by simply removing content from repository index could be re-
quired for managed forgetting. For Preservation Planning, processes are exe-
cuted close to the data (e.g. fixity checks or format transformation), making use
of Storlets. For Archival Storage, a module for storing AlPs, integrating with PDS,
must be implemented. AIP versioning useful for specific ForgetlT processes. In-
tegration using REST API, Web user interface is useful.

Main APls, input and
output formats

REST APIs for ingest and access are exposed, AIP packaging model should
make use of METS [19] for metadata description, packaging format based on
Baglt or derivatives. Supported protocols include OAI-PMH, an additional CMIS
or JCR compliant interface must be implemented if required.

Plan for integration at
M18

Fully implemented and integrated, adopt existing solution for early integration.

Plan for integration at
M27/M36

Refinements due to possible changes in the components or to demonstrate ad-
ditional scenarios.

Language, runtime | Java, running in application server.

framework

SW and HW Re- | Linux server, enough disk space for test resources and services.
quirements

Dataset for testing

Picture dataset as first test, then all content types from user applications.

License

Open source, GPL or BSD compliant.

Notes

Evaluation of different candidate solutions reported in Section 7.1.

Table 13: Digital Repository (Preservation System, WP8)

Page 31 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Component Name

Cloud Storage Service

Partner Responsible | IBM
Contributing Partners

Work Packages WP7

Reference Deliver- | D7.2, D7.3, D7.4
ables

Current Status

Preservation DataStores and Storlet Engine is under development.

Short description and
role

Preservation DataStores (PDS) is an OAIS-based preservation-aware storage
that serves as an advanced Archival Storage and supports offloaded functional-
ity. At the top, it provides an OAIS-based interface for operations on AlPs (e.g.,
ingest, access, delete), as well as an interface for preservation actions (e.g.,
check fixity, transform, add aggregation). At the bottom end, it utilizes various
generic cloud storage and compute from different providers. In addition, the
system includes a Storlet Engine that can be plugged into a private cloud or ob-
ject storage to execute computation modules (called Storlets), close to the data
(transformations or other resource consuming tasks executed on the archived
content can be done directly in the Preservation System without requiring to
extract it to a server and put it back into the Preservation System). The PDS in-
terface specification can be found on the ENSURE project web site [24, 25]. The
underlying cloud storage that will be used in PDS for ForgetIT is the OpenStack
Swift, the Object Storage component of the open source OpenStack [21] frame-
work, enhanced with a Storlet Engine to perform computations close to the data.
Building the Storlet Engine and Storlets for ForgetIT data and use cases is the
main focus of WP7. Examples of potential Storlets for ForgetIT: (1) Summariza-
tion and aggregation processes to enable managed forgetting in the archive, (2)
Redundancy detection and deletion processes to support managed forgetting,
(3) Multimedia analysis algorithms, (4) Integrity checks to make sure the data is
not altered over time, (5) Format transformations.

Delivery Mode

REST service deployed in a virtual machine

Subcomponents

PDS, OpenStack Swift, Storlet Engine

Main APIs, input and
output formats

PDS interfaces are documented in WP7 deliverables.

Plan for integration at
M18

Afirst release of PDS with Storlet Engine and some Storlets for specific ForgetIT
tasks.

Plan for integration at
M27/M36

Intermediate and final release of PDS with Storlet Engine.

Language, runtime | Java, Python

framework

SW and HW Re- | Linux with OpenStack software and IBM extensions
quirements

Dataset for testing

Depends on ForgetIT use cases and Storlets, all content types provided by Active
Systems and ingested in the Preservation System are supported, transformation
with Storlets is applied to specific content types according to preservation rules.

License

Proprietary

Table 14: Cloud Storage Service (Preservation System, WP7)

Page 32 (of 72)

www.forgetit-project.eu

ForgetlT Deliverable D8.1

4 Architecture Diagrams and Integrated Workflows

In this Section we present a first round of more in depth modeling of the PoF architecture
and the related processes. For this purpose, we adopt Unified Modeling Language (UML)
notation [26], creating static and dynamic diagrams of the architecture. We are currently
using only a subset of the available diagrams, namely component diagrams among UML
structure diagrams and activity diagrams among UML behavior diagrams. Further, more
fine-granular diagrams will be exploited in the next round of modeling, for example class
and object diagrams will be added to deliverable D8.3 [13].

In addition to deployment and component diagrams for the PoF Framework architecture,
we also describe two initial priority workflows which will be used to drive and validate early
integration of the main components in the PoF Middleware as well as their interaction with
the Active Systems and the Preservation System. For those integrated workflows we
provide UML activity diagrams.

4.1 Structure Diagrams

In Figure 3 a UML deployment diagram is shown, based on a possible configuration of
systems and nodes which will be implemented for development and testing (see Section 6
for a description of the testbed environment).

==executionEnvironment==
Test Server

Semantic PoF Middleware
Desktop HTTR/VPN

HTTP/LAN HTTP/LAN Preservation

Tools

HTTR/LAN

TYPO3 CMS

HTTPVPN

Services

Figure 3: Deployment diagram of the PoF architecture.

The component diagram of the architecture is depicted in Figure 4. It is based on the ar-
chitecture overview presented in Figure 1 and shows main interfaces and protocols con-
necting system components. The functionality of the individual components has already
been described in Section 3.

Page 33 (of 72) www.forgetit-project.eu

Deliverable D8.1

ForgetIT

‘(swalsAs annoe bunsixa :asionbin) ‘paziwolsnd pue panoidwi aq 0} sjuau
-odwod Bunsixa :anjq f1osload ay) burinp padojanap sjusuodwod :usasb) ainjoapydie 40d jo weubelp Jusauodwo?) ¢ ainbiy

uolleAEsald [BUOREZIUEBIG
wa3sds anay|

(L53y)
dia ss830y ﬁm Jojpenxy —| ﬁm Jopabiog
SIWD

Felll em W

aboq

J9Z||ENIXBIU0D Jojesuapuod
sabeuepy E; men_\mﬂ_m\r_. B 19SSV EOdAL adepa3u|
ABAIYIY Jasn
ao1n8q 26el0ls (153¥) e o 1o3ebinen
i auibug 1dv sad] RIS E] dopisaa
B uoleAISS g 1534 SWD €0dAL
ﬁm aujbug 3214035 7@ (g53) sng adAaJas asuudiajul jod 7 IO
(1s3u)
dIy 81015 Jebeuepy 7 7
[E wims yrersusdo Asonsodey T angom
uopeAIRsSId fioysodey E owd
ejepesi SIWD EELIC]
(sad) seJ0iseIEq UOIEAIBSIId 1epodwy UU [B ®4emy-3xa3u0d [E mivy
abejpeq n Jaydepy g anqow
s3u) aoqias | (B OWd
IS 1586u] E Jabeuew ai & Ja|npayss @
E 21em3|pPIW (40d) 386404-10-8A1859.d e,
Jia3u]
E WISISASINOREARES1d ! (as) dopisaq spuewsas Jasn
Buusguizwiay pazijenpEiuod | dopiseq
Bunisbiog pabeuen uolleAIESald [BUOSISd
‘uoierIasald 2ebisuds wi21sAs aniav|

www.forgetit-project.eu

Page 34 (of 72)

ForgetlT Deliverable D8.1

4.2 Integrated Workflows

Within ForgetlT it has been decided to identify a smaller set of workflows including core
ForgetlT functionalities. These workflows will be used to define priorities for the integra-
tion activities in the first phase of the ForgetIT project (see also Section 5). Figures 5 and
6 show two workflows that have been defined for this purpose, identified as Basic Syner-
getic Preservation and Basic Managed Forgetting Supportwith the following notations: (1)
complex activities are written in bold (a sub-diagram will be defined in the future), while
non-bold is used for actions related to less complex actions, (2) red arrows distinguish
"object flow” (red) from "control flow” (standard case, black).

The first workflow (see Figure 5) focuses on a basic form of Synergetic Preservation,
which enables the smooth transition of a resource from the Active Systems into the
Preservation System passing through the process of contextualization and packaging.
The second workflow (see Figure 6) focuses on core functionality of information value
assessment as it is required for realizing the Managed Forgetting process. In implement-
ing these first workflows the focus will be on ensuring proper interaction between the
individual components in the architecture. More advanced functionality for the individual
components will be added stepwise to the individual components in later phases of the
ForgetlT project. Both processes are described in more detail in the following Sections.

4.2.1 Workflow 1: Basic Synergetic Preservation

The workflow depicted in Figure 5 defines the process for a basic form of Synergetic
Preservation and shows the involvement of the ForgetIT components into this process.

Preservation is initiated by a preservation process, scheduled either to start on a regular
basis or to be triggered by an event. The Scheduler, connected to the PoF Middleware bus
(see Figure 4), starts the archiving process for a selected set of resources. This process
inspects the Preservation Value (PV) and the preservation status that is stored for the re-
sources in the Metadata Repository and, based on this information, decides which of the
resources are handed over to preservation. We focus on cases where the PV is explicitly
manipulated in the Active Systems and a change of the PV is triggered by a preserva-
tion request in the user applications. The update of the PV is written into the Metadata
Repository. As a next step after deciding about preservation, a simple contextualization
activity is performed. This step adds core context information to the resource(s) to be
archived. For this purpose, the Contextualizer is used, which interacts with the Metadata
Repository, the Extractor and possibly also with the Active Systems and external sources
to collect the required context information. The core challenge here is to derive concise
context information, which enables future interpretation, while not overloading the Preser-
vation System with unnecessary information. Both the resource(s) to be archived and the
context information are handed over to the Collector/Archiver component for packaging
them into a SIP package. After this step the resource is ready to be handed over to the
Digital Repository, which is part of the Preservation System.

Page 35 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

At this point the archival of the packages in the Preservation System is initialized. This
includes checking the packages for fitness to be archived. As a result of this fitness test
a transformation might become necessary. In the ForgetIT system this transformation will
be performed by a Storlet, foreseen for this purpose in the Cloud Storage Service. There-
fore, the transformation will be scheduled and will be performed once the packages have
been transferred into the Cloud Storage Service, which is the next step in the workflow. If
the archival is successful the archive ID(s) assigned to the resource(s) are returned to the
PoF Middleware and stored in the ID Manager together with the time of archival, in order
to enable translation of an ID of the resource in the Active System to the ID of the same
resource in the Preservation System. Furthermore, the Scheduler will be informed about
the completion of the archival action. In case of the failure of the archiving process, the
Scheduler is notified accordingly and decides about the notification of the Active System.

4.2.2 Workflow 2: Basic Managed Forgetting Support

The workflow shown in Figure 6 is made up of two separate processes for information
value assessment, which both serve the purpose of helping the user to better structure
her information space according to the value or importance of information, the Memory
Buoyancy (MB). Such information value assessment is the starting point for the Managed
Forgetting process.

The first process starts from the observation of usage of resources in the Active System.
Such information about the usage is collected by the Active System and transferred into
a message cache on the side of the PoF Middleware. Independent from this activity, a
forgetting action can be scheduled in the PoF Middleware. This is done by the Scheduler,
e.g., on a regular basis. Once the scheduled forgetting action is started, the Forgettor
component uses the relevant usage information from the cache (see above) and possibly
also further context information to compute new values for MB and/or PV for the consid-
ered resources. In addition, it also uses previous MB and PV values as well as strategies
for this computation. The new MB and PV values are stored in the Metadata Reposi-
tory, connected to the PoF Middleware bus. The new values in the Metadata Repository
can subsequently be accessed by the Active System, for example, in order to adapt the
visualization of resources in the Active System according to their MB value.

The second process focuses on a quality-based contribution to MB, rather than a usage-
based one as for the first process. This second process is started by the Active System
by triggering a quality assessment process for a newly captured set of images (e.g., in the
Semantic Desktop) via the Scheduler. The Scheduler activates a service for performing
quality checking. This quality-assessment service, which is part of the Extractor, gets
access to the collection of images under consideration, e.g., by uploading them. Subse-
quently the automated quality assessment of the images is performed and the results of
this assessment are stored into the Metadata Repository. The quality assessment results
in the Metadata Repository can be accessed by the Active System and can be used to
trigger further activities such as suggesting some of the images for deletion.

Page 36 (of 72) www.forgetit-project.eu

Deliverable D8.1

‘(p1oqg uil suoioe xajdwod) uonealdsald d118biauig siseg 103 moIop\ Alolld :G ainbi4

=
o

www.forgetit-project.eu

ForgetlT

=
=
L |
EA
“UDELLIOJSUEL] PSINRSY5 c
®< X :
i
=
&
=
=)
ol
iagIssod UDjlELLIGSURL] .M
I}
o
=
ugisIag . s=a001g
e s s
Se0unosay Joy S50y : a
EMELS PUE S3N[EA ALY
uCpEnEsa 32D ums
=
]
B
=
S5330ug =
Guian2.y =
(M¥g)aIes .S anpayg i
ain|ie4 uo uayzd :
JBNPRY3S ARon 1=Bnpayas Anoy
o
t
=
o
L]
[
i
=

Page 37 (of 72)

Deliverable D8.1

ForgetlT

*(smoy} [043U0D :smodle }oe|q ‘smoy} 1o3lqo
:smodie pau ipjoq ul suojjoe xajdwod) Buiebio4 pabeuepy pue JusWSSISSY anje) uollewdoyu] 10} MO|IOM Aliold :9 ainbi4

(awW) Azuefong
faowap
andwoy

uopewIgu| 3sesn 5
ueAdfEy 139

uopay bupiebioy
PafnpayyI5 1\

Jayng abessaw (sabessaW)

UOIRLI|

2UCM2001M 494

==JaJJng|ejjuad=> abesn
Jo Bupyaed
sanjep awy L pPInpayIs
Ayend
sbew) uony
ayndwoy Bu
1ebiog
BINpayas uoELID |

abesn 1daooy

faoysoday
ejEpEap

fioqjsoday
EIEDRIAN WOJ)

LD BB
abesn puas

sabew) jo jos
menN Joj Buppeyd
fanend saeniay

anjen B 99

W5 AS Ay

uon@aq 3sabbng

www.forgetit-project.eu

Page 38 (of 72)

ForgetlT Deliverable D8.1

5 Integration Plan

According to ForgetlT project proposal, three releases are expected for the ForgetlT PoF
Framework, described in deliverables D8.3 (first release), D8.4 (second release) and D8.6
(final release), respectively. In parallel two releases of the PoF Reference Model will be
available, reported in deliverables D8.2 (initial model) and D8.5 (final model), respectively.

The integration plan for the components of the PoF Framework is summarized in Table 15.
For each component described in the previous Sections, we report the planned integration
status for each expected PoF Framework releases.

For each component we distinguish three generic integration levels: None, Partial and
Complete, where None refers to no or very limited integration, Partial is used when only
some component functionalities have been integrated or when the integration still makes
use of some temporary solutions and workarounds to be replaced or better engineered,
while Complete refers to the integration of all available functionalities, developed to a sat-
isfactory level and in compliance with integration best practices (e.g. loose coupling). It is
worth noting that the levels above are associated to the degree of integration of a given
component, but are also affected by the development status of a given component for a
specific PoF Framework release. Some components will be designed and implemented
at the very beginning, because they are crucial for the first release implementation or
because their implementation is independent of other project results, while other compo-
nents will require deeper analysis within technical WPs.

For each component the development plan has been discussed within the corresponding
Work Package with all involved partners. First the role of the component in the overall
architecture has been discussed in detail and shared among all interested partners, then
a detailed plan for the integration in the first PoF Framework release has been prepared.
The details about each component have been already discussed in Section 3, further
information can be found in the deliverables by the corresponding WPs.

5.1 Plan for the first PoF Framework release

For the first release of the PoF Framework we will adopt a two-step approach: we will
start with the integration of a limited number of components in order to demonstrate the
two priority workflows discussed in Section 4.2, involving the three architecture layers.
This early integration will demonstrate that a complete workflow can be executed, start-
ing from active content use, through basic managed forgetting, simple contextualization,
archiving and storage; restore of the content back to active use (after possible transfor-
mations based on simple rules) will also be shown. With this infrastructure in place, we
will be able to test the main interfaces provided by each system and the communication
protocols among the different layers. From this preliminary test phase we expect the ex-
plicitation of further requirements with respect to the interaction between components.
We will also evaluate the packaging model used for archiving and the final deposit on the

Page 39 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

cloud storage. After this phase is completed, we will integrate more components into the
PoF Middleware, adding additional functionalities to the overall framework.

According to Table 15, for many components a prototype will be ready by the time of the
first release. They will be improved during the project lifetime, also taking into account
evaluation results from the applications (e.g. the pilots scheduled at M23). In particular,
for the PoF Middleware implementation and the Digital Repository, candidate implementa-
tions will be evaluated early in the project (see Section 7). For each component a partner
responsible for development and testing has been identified, although many components
will require contributions by several partners and different WPs.

In a nutshell, for the first release the project will deliver a preliminary version of the PoF
Framework with the main architecture blocks already integrated and able to communicate.
This will be used to demonstrate two initial integrated priority workflows for both the per-
sonal and organizational scenario. Finally we will make use of the packaging model and
a number of Storlets running in the cloud storage performing content transformation.

5.2 Preliminary plan for other PoF Framework releases

A detailed integration plan for the other releases is not meaningful at this stage, anyway
in Table 15 we also report the tentative plan for the second and third framework releases.
For the components already integrated in the first release, they will be replaced by im-
proved versions developed in the technical WPs, as discussed above. We can expect
that after the first framework release, the evaluation from the users will provide additional
feedbacks which will help in improving the overall system. As already mentioned, further
development of the components will also provide additional features to be integrated. A
detailed plan for the other releases will be discussed internally among all partners after
completing the first release and will be updated in the incoming WP8 deliverables.

5.3 Testing components and integration

For each component, both white-box and black-box testing techniques will be used. White-
box techniques will be used by partners responsible for each component to test core
functionalities in a controlled environment, simulating input from other components or
triggering specific events. When a new release of a given component will be ready, it will
be integrated in the framework using the testbed environment (see Section 6). The com-
ponents will be deployed as standalone binary executables or libraries or as web services
deployed in virtual machines.

The testbed environment will be used also for black-box testing of the priority workflows,
starting from events triggered by user applications, as discussed before. This black-box
approach is also important to validate the stability and robustness of the PoF Framework
APIs and to evaluate the performance of the overall framework.

Page 40 (of 72) www.forgetit-project.eu

Deliverable D8.1

ForgetlT

"8uIbu3 181101S Jo uoisieA palepdn eleibelul :eses|al puodses -slepdn ‘sseooe ‘1sebul 10} pesn s|dY SAd 8lge|ieAe JO 18sqns :ases|a. 18Il
"sebueyd [ewiuIW YIIM 1O XOg 8Y} JO INO Pasn &g 0} UoNN|0S 8|qe|ieAe Jdope :ases|al 1Sil,

‘Buibexoed jusuod ‘ualo SIAD 1o uoneuswsdwi Areulwiaid :asesjal 1S4,

"IX8JU0D PAJBIDOSSE YIM SJudluod Buismoiq ‘yoless diseq 1o} adAjoloud Areuiwiaid :esesjal ucooow.Q

"SJUBWINJO0P 1x8} 40} AJUo paluswaldwl UOIBZIBNIX8lu0D :8ses|al 1slids

"(uonosjep 1deouod *6-9) sisAjeue sbew pue 1xa} 1o} seilifeuoioun; alepdn :eses|al PuUodes,

‘adAj0104d Ateuiwaid jo sanieuonouny aelbalul :ases|al puodas s|dy Aleulwiaid yim aoiaias gam ‘palaidwod ubisap Jusuodwod :ases|al 1S4,
"|8pO\ ®ouBIBleY 40d wolj Indul ‘pejusws|dwi adAjoloid Areulwijeid :eses|al puodes,

‘Buiinpayas sqol ‘smojpiom Ajiolid omy 1oy saljijeuoiouny diseq :asea|al 1s414,

"(1x8}) sjueu0d B|ge|IeAR JO 18SgNS B UO UoleAlssald 80inosal 1obBl) ‘0osalyly Ag pesodxe Janies SIIND :oses|al 1Siid,

"8l01sa. pue uolealasald 82inosal Jabbuy ‘Janies SIND Jo uonejuswa|dwi Ateuiwiaid :ases|al 1S1id,

‘(N) auop “(d) rented ‘(D) arejdwos :pasn ale s|aAd| uoljeibajul Jualdp 994y}
‘aseajal YJomawel4 40d Yyoea 104 "¢ uol}9ag 0} buipiodoe palisseld ‘sjusuodwod yiomawei4 404 10} uejd uoneibajuj gL ajqeL

0 o) d ve‘eee| NG yobeloig pno|o
o) o) o) v'€‘2ee | Xidn3 Alousoday [eubig
wa)sAg uoljealasald
0 o) d R N1l 48AIY21y/10108]|0D
0 d N €€'ge | adsn yJorebineN
0 o) d €e‘ge | adsn £19Z11ENIX8juo)
0 d N €€ ‘22 | H1Y3aD lojesuspuo)
0 0 d €¢e‘ge | HIY3AD 4J010841Xg
0 d d gege HN1 o101190.104
wEw:anoO 9100 a1eMm3|PPIN 40d
0 d N zge‘zge N11 pJebBUB\ UOBAISSBId BJEMY-]X8lu0)
0) d 2'€'22 | Xxidn3 218INPaYOS
0 0 0 2€‘22 | HNM Jebeue |
0 d N 2€'22 | xidn3 Aloyisoday ejepelo|y
sjusauodwon paieys aiema|ppin 40d
0 o) d I'e‘L'e PYP gSWD £O0dAL
0 o) d I'e‘b'e | IM4a =(ONId) dopjseq onuewss
swalsAs annoy

| (9SN) "194 1euld | (22N) °19Y pu2 | (8LIN) °I19H sk | suonoag | -dsay | jusuodwo) |

www.forgetit-project.eu

Page 41 (of 72)

ForgetlT Deliverable D8.1

6 Test Environment

The activities related to development and integration of architecture components will be
supported by a test environment available to all partners. We make use of virtualization
to test the components developed by each WP. The dataset used for the preliminary
integration is composed by different content types (pictures, text documents, videos, web
pages) provided by the two user applications.

Test Infrastructure

The test environment for the deployment of the PoF Framework components, hosted by
EURIX, in depicted in Figure 7. The test infrastructure includes a dedicated DELL Pow-
erEdge R320 server, equipped with Linux (Ubuntu 12.04 LTS 64-bit), and a 8 TB NAS for
data storage, connected via dedicated Gb Ethernet connection.

The address of the test server is forgetit.eurixgroup.com (see Figure 7) and will
be used to publish project public demos, too.

forgetit.eurixgroup.com
62.152.112.55

DELL PowerEdge R320 w KVM /

| |

l ;E ForgetiT Network—E:S?E?ﬂY.l’!ﬂ.......

192.168.253.0/25 | 192168253128;25

VM Backup
Data Storage
192.168.254.0/30

Figure 7: Configuration of the test environment.

Virtualization

The testbed server provides a virtualization environment based on Kernel-based Virtual
Machine (KVM) [27]. KVM is a full virtualization solution for Linux on x86 hardware con-
taining virtualization extensions (Intel VT or AMD-V) and consists of a loadable kernel
module providing the core virtualization infrastructure and a processor specific module.

Page 42 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

Each system or component to be tested and integrated in the ForgetlIT platform can be
deployed in a virtual machine. Each virtual machine has private virtualized hardware:
a network card, disk, graphics adapter, etc. The kernel component of KVM is included
in the main Linux kernel starting from version 2.6.20. Virtual disks can be converted
to/from other virtualization formats to be used with other virtualization solutions, such as
VirtualBox, VMWare or XEN.

Network Configuration

During the first development phase access to applications and demos will be available
from outside only to project partners, using a VPN connection to grant access to a For-
getlT dedicated private network. This will guarantee the appropriate level of confidentiality
for all development activities under the consortium agreement. Then the project will pro-
vide public access to the PoF Framework for dissemination purposes.

A ForgetlT dedicated network has been created, the IP addresses of the different services
available will be shared among all partners. An FTP area is also available for uploading
and sharing huge files for the integration and test (e.g. virtual machines, installers, con-
figuration files, test samples, etc.).

Test Dataset

The target of the first PoF Framework release is to test and validate the defined APIs
and the protocols and to implement an end-to-end workflow based on the two priority
workflows described in Section 4.2.

The dataset used for the preliminary integration tests contains pictures, text documents,
web pages and short videos, with different formats, provided by the user applications.
For example the Peter Stainer photo collection for the Semantic Desktop (see D9.1 [7])
and the Spielwarenmesse Press Release dataset for TYPOS3 will be used for testing.
Dedicated datasets will be provided by other partners for testing specific components, for
example text documents for contextualization or images for feature extraction.

Development and Integration

The initial activities of development and test for each component will be performed by
each partner at their own institution. For example the Cloud Storage Service based on
OpenStack Swift will be initially developed and tested at IBM premises and when a new
release is ready for testing by other partners will be deployed to the test environment.

For specific purposes or events, the partners could decide to deliver part of or the whole
system to other servers and infrastructures, for example in case of specific testbed events
which require datasets or other resources which cannot be supported or managed in the
test environment.

Page 43 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

7 Candidate Components for the PoF Framework

In this Section we describe existing software applications which can be used to implement
specific components in the overall architecture. We focus here on candidate solutions for
two WP8 components: the Digital Repository and the PoF Middleware. For the Digital
Repository the evaluation criteria and the results of the assessment are reported. For the
PoF Middleware we list existing applications, based on different approaches in the field
of enterprise application integration, which can be used to implement the ESB and the
integration framework for the components developed by technical WPs. Concerning other
components listed in the previous Sections, namely the two Active Systems (PIMO and
TYPQO3), the Cloud Storage Service and all components internal to the PoF Middleware,
they are described in detail in the deliverables of corresponding WPs.

7.1 Digital Repository solutions

In this Section we describe the assessment of candidate applications for the Digital Repos-
itory, one of the two components inside the Preservation System. The Digital Repository
exposes a REST API to the PoF Middleware and integrates with Cloud Storage Service.

The approach described in the following focused mainly on the evaluation of existing open
source solutions compliant to OAIS, developed by other research projects and initiatives
in the field of digital preservation. The reason behind this approach is twofold: on the
one hand, several initiatives already developed preservation platforms inspired by OAIS,
supporting a large variety of content types and formats, and adopting an existing solution
for the Digital Repository rather than reinventing the wheel is crucial to ensure effective
use of project resources, in this way effort is focused on implementing the PoF Middleware
to support core ForgetIT principles; on the other hand, commercial solutions available on
the market have been discarded on purpose, since an open source and free solution
rather than a proprietary implementation better suits the objectives of the project and the
possibility to integrate the results from technical WPs, preventing vendor lock-in.

In the following paragraphs we first identify the assessment criteria for the evaluation,
then we list the most relevant candidate solutions for the Digital Repository and provide
a candidate software matrix based on the criteria above and finally discuss the results of
the evaluation and the selection of the best candidate solution.

Assessment criteria

In order to evaluate candidate solutions for the Digital Repository and select the most
suitable one for the PoF Framework, a list of assessment criteria has been defined. We
provide a criteria catalog following the approach described for example in [28], which
suggests an assessment methodology of digital preservation systems based on a market
survey and shows the application of the criteria catalog to some example products.

Page 44 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

We extended the approach in [28] by tagging each criterion as mandatory, desirable or
optional. The requirement level associated to each criterion is assigned taking into ac-
count the specific ForgetIT context. For example, support for cloud storage is a mandatory
requirement based on the PoF Framework architecture and on the need to integrate the
Cloud Storage System with the Digital Repository solution selected here.

The decision-making process outlined in [28] provides three starting points for building
the criteria catalog: reference models, technologies and use cases. Concerning ref-
erence models, ForgetlT will deliver a PoF Reference Model to extend OAIS functional
and information models in order to support core ForgetIT principles. The PoF Reference
Model is not yet available at the moment of writing, but we can envisage that requirements
originating from PoF Reference Model will affect mainly the PoF Middleware. Concerning
the Digital Repository, the main requirements are related to the smooth transition from
and to Active Systems based on robust APls and standardized protocols, to the need for
a data model supporting links between digital items and extensible with context informa-
tion and to the integration with external preservation aware storage systems such as the
Cloud Storage System. Concerning technologies, the mandate for the project is to select
open solutions which can be adopted by the digital preservation community and future
adopters of the PoF Framework. Based on the expertise within the consortium and on
the languages adopted to implemented the other components in the architecture, Java
EE technologies have been chosen for implementing the core architecture components
and the same requirement is applied to the Digital Repository candidates. Concerning
the use cases, support for the main ForgetlT content types (images, text documents, web
pages), content versioning and standard information packages are required.

Criteria have been split into the following categories:
e General criteria: general requirements for a digital preservation system;
e Ingest criteria: functional criteria related to the ingest process;

e Access criteria: functions concerning procedures for user access to ingested ob-
jects;

e Data Management criteria: functional criteria describing the management of in-
gested objects;

e Archival Storage criteria: functional criteria related to storage of digital items.

Assuming OAIS as reference model for functional criteria, other non functional criteria
relevant for ForgetIT include software quality and costs required to install and operate the
adopted solution. This can be fulfilled by selecting widely adopted open source solutions
with an active community supporting software development, maintenance and documen-
tation, which also prevents vendor lock-in and provides an adequate technical support.

Table 16 and Table 17 describe the adopted assessment criteria, their requirement level
and a brief description, split according to the list above. Many criteria have been selected
from the assessment procedure described in [28].

Page 45 (of 72) www.forgetit-project.eu

ForgetlT

Deliverable D8.1

| ID | General Criteria | Requirement | Description |
M1 | Open source Mandatory The platform is available as open source
M2 | Out of the box Mandatory The user can use the platform after default
installation
M3 | Community support Mandatory The platform is adopted and supported by
a large community of users
M4 | Stability Mandatory The application is delivered as a stable plat-
form and not as a prototype
M5 | Interoperability Mandatory The platform supports standard formats for
exchange of objects and metadata
M6 | Java technologies Mandatory The platform is implemented with Java EE
technologies
| ID | Ingest Criteria ' Requirement | Description |
M7 | Versions Mandatory The platform manages multiple versions of
the ingested data
M8 | Ingest Procedures Mandatory The user can define policies for ingesting
contents; user profiles and ACL
D1 Metadata Registry Desirable The platform can be extended to support
new metadata schema
D2 | Format Registry Desirable The platform can be extended to support
new formats
D3 | Ingest Queue Desirable Jobs for batch ingestion allowed
O1 Ingest GUI Optional Ingestion using guided procedure offered
by the GUI
| ID | Access Criteria | Requirement | Description |
M9 | Access Procedures Mandatory The user can define policies for accessing
archived contents
M10 | Accounting Mandatory The platform provides an registration pro-
cess to manage contents
D4 | Search Desirable The platform provides advanced search en-
gine for the user to find stored data
D5 | Objects Dissemina- | Desirable The user is allowed to export stored ele-
tion ment into various dissemination formats
D6 | Metadata Dissemina- | Desirable The user is allowed to export metadata
tion schema of stored element into various for-
mats
D7 | Federation Desirable The platform provides common search and
retrieval methods for federated access
D8 | Extensibility Desirable The platform can be extended with custom

add-ons and plug-ins

Table 16: General, Ingest and Access Functional Criteria

Page 46 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

ID

Data Management
Criteria

Requirement

Description

M11 | Descriptive Informa- | Mandatory The platform manages AIP descriptive in-
tion formation
M12 | Database Manage- | Mandatory Management of internal database, includ-
ment ing update and maintenance
M13 | Virus Check Mandatory Integrated tools for virus check of ingested
content
M14 | Standards Mandatory Standard metadata formats for information
packages (e.g. METS, PREMIS)
D9 | Audit Trail Desirable Consistency checks for information stored
in the database
D10 | Content Quality Con- | Desirable Integrated tools for Quality Control
trol
02 | Reporting Optional Functions to produce reports about stored
information
O3 | Metadata and Format | Optional Embedded tools for converting metadata
Migration and formats based on policies
O4 | Dashboard Optional Dashboard for job monitoring and adminis-
tration
ID Archival Storage | Requirement | Description
Criteria
M15 | Object Identification | Mandatory The platform manages content identifiers,
assigned uniquely
M16 | Cloud Storage Mandatory The platform supports cloud storage ser-
vices
M17 | Original Content Mandatory The original file received by the producer is
stored in the archive
D11 | Content Organization | Desirable The user is allowed to organize data hierar-
chically
D12 | Object Type Support | Desirable Virtually any content type is supported
D13 | No Limits Desirable The number or the size of ingested digi-
tal objects is not limited, ability to deal with
huge files
O5 | Timeline Optional The platform provides a time line of the ob-
jects organization
06 | Logical Storage Or- | Optional The platform maps the conceptual organi-
ganization zation to database objects
O7 | Normalization Optional Automatic creation of preservation and ac-

cess copies with normalization tools

Table 17: Data Management and Archival Storage Functional Criteria

Page 47 (of 72)

www.forgetit-project.eu

ForgetlT Deliverable D8.1

The following disclaimers point out the limitations of the adopted approach as well as
some considerations related to ForgetlT context:

Disclaimer 1 Two OAIS functional entities have not been mentioned above: Preservation
Planning and Administration. The former will be covered mainly by the Cloud Storage
System (preservation tasks implemented as Storlets) and by other components in the
PoF Middleware. Concerning the latter, it is related to the day-to-day management of the
archive, to auditing of producers and agreements with them and also to monitoring of
archive operations and is less relevant in the specific research context of ForgetlT.

Disclaimer 2 |t is worth mention that a systematic assessment procedure is beyond the
scope of ForgetlT. Other EU initiatives have been funded in order to provide technology
scouting and assessment in evaluating digital preservation tools and applications. Fur-
ther information concerning assessment criteria is available in [29], [30], [31] and [32].
Recently the Presto4U project [33] published the assessment results for two platforms,
P4 and Archivematica, as part of the technology assessment based on standards defined
by ISO and IEEE, and other platforms such as DSpace will be added to the next tech-
nology assessment report. Concerning OAIS compliance, a detailed list of requirements
is reported in [20], some of these criteria have been selected for the ingest and access
assessment of the candidate digital preservation platforms.

Disclaimer 3 The approach adopted here is based on a criteria catalog rather than on a
single label summarizing the results of several assessment criteria. An example of a sin-
gle measure approach is the Technology Readiness Level (TRL) [34], used to assess the
maturity of evolving technologies, where the assessment is performed during its devel-
opment and provides a common understanding of technology status, although readiness
does not necessarily fit with appropriateness or technology maturity. TRL gained popu-
larity also in software applications.

Disclaimer 4 Commercial and proprietary solutions haven’t been considered here.

Page 48 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

Candidate solutions for the Digital Repository

For the selection of a candidate implementation of the Digital Repository we identified a
list of platforms, selecting among the outcomes of relevant projects and initiatives in the
field of digital preservation or among popular solutions maintained and supported by an
active community. The following platforms have been selected:

e DSpace, described in Table 18
e RODA, described in Table 19

Archivematica, described in Table 20

Fedora, described in Table 21

e P4, described in Table 22
e iRODS, described in Table 23

DSpace and Fedora are content management systems and also popular solutions for
institutional repositories; RODA, Archivemativa and P4 claim they are compliant to OAIS
(Compliance with the OAIS model is difficult to demonstrate and measure): RODA is a
preservation system built on top of Fedora developed by Keep Solutions, Archivematica
is a preservation system by Artefactual and P4 is a preservation platform originating from
AV broadcaster domain and developed by EURIX.

As already mentioned, proprietary solutions have not been taken into account in the eval-
uation and therefore have not been selected. For each platform we provide a fact sheet
with a short description of the following features, based on available documentation and
preliminary tests on default installations available in the ForgetIT testbed:

e Open source license, documentation, support community, last stable release

Programming language, adopted technologies, runtime environment

APIs and protocols for integration

Archive data model and packaging

Supported content types (see D9.1 [7])

¢ Integration of Cloud Storage Service and other components

Additional information, including technical details and support are available on the ref-
erence web site provided for each solution. The descriptions are meant to provide an
overview of each candidate and are preliminary to the actual assessment based on the
criteria reported at the beginning.

Page 49 (of 72) www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Name DSpace
Project Page http://www.dspace.org
License BSD

Short Description

DSpace is an out of the box open source repository application for delivering
digital content to end-users, typically used for creating open access repositories
for scholarly and/or published digital content. It is considered the most widely
used open source repository software for non-profit and commercial organisa-
tions. DSpace captures, stores, indexes, preserves and redistributes an orga-
nization’s research material in digital formats. Research institutions worldwide
use DSpace for a variety of digital archiving needs - from institutional reposito-
ries (IRs) to learning object repositories or electronic records management, and
more. DSpace can be customized and extended. An active community of devel-
opers, researchers and users worldwide contribute to DSpace community. While
DSpace shares some feature overlap with content management systems and
document management systems, the DSpace repository software serves a spe-
cific need as a digital archives system, focused on the long-term storage, access
and preservation of digital content.

Source Code, Doc-
umentation, Commu-
nity

Source code on Sourceforge [35] and GitHub [36], documentation on project
web site [37], project community supported by DuraSpace [38] and institutions
supporting DSpace.

Last Stable Release

4.2 (July 2014), assessment based on version 3.2 (July 2013)

Language, Runtime

Java, application server and RDBMS required

APls and Protocols

REST APIs, supports OAI-PMH and SWORD

Data Model and
Packaging

DSpace defines a structured data model [39], representing digital contents in
terms of collections, communities, items, and sites, associating different levels
of support for objects to be preserved. AlP is a Zip file containing a METS man-
ifest and all related content bitstreams. Each bitstream is associated with one
bitstream format. For preservation, it is important to capture the specific formats
of files that users submit. In DSpace, a bitstream format is a unique and con-
sistent way to refer to a particular file format. An integral part of a bitstream
format is an either implicit or explicit notion of how material in that format can
be interpreted. Each bitstream format additionally has a support level, indicating
how well the hosting institution is likely to be able to preserve content in the for-
mat in the future. There are three possible support levels that bitstream formats
may be assigned by the hosting institution: Supported, Known or Unsupported.
Although DSpace provides some default values for Supported, Known and Un-
known formats, each institution should determine the appropriate values based
on local preservation strategy. Each item has one qualified Dublin Core meta-
data record. Other metadata might be stored in an item as a serialized bitstream,
but Dublin Core is stored for every item for interoperability and ease of discov-
ery. The Dublin Core may be entered by end-users as they submit content, or it
might be derived from other metadata as part of an ingest process. ltems can
be removed from DSpace in one of two ways: they may be 'withdrawn’, which
means they remain in the archive but are completely hidden from view or may
also be 'expunged’ if necessary, in which case all traces of it are removed from
the archive. DSpace holds descriptive, administrative and structural metadata.

Content Types, For-
mats, Standards

Virtually any type of file, regardless of format or extension can be stored in
DSpace. Support here is defined as being able to upload the file, and offer-
ing it for download to end users. For text formats, DSpace offers full-text index-
ing and searching. For images, DSpace offers thumbnail generation and dis-
play. DSpace supports HTML documents keeping cross references, relevant for
TYPOQS. Packagers translate between DSpace ltem objects and a self-contained
external representation, or "package”.

Page 50 (of 72)

www.forgetit-project.eu

http://www.dspace.org

ForgetlT

Deliverable D8.1

Content Types, For-
mats, Standards
(continued)

A Package Ingester interprets, or ingests, the package and creates an ltem. A
Package Disseminator writes out the contents of an ltem in the package for-
mat. A package is typically an archive file such as a Zip or "tar” file, including a
manifest document which contains metadata and a description of the package
contents. DSpace Simple Archive Format can be used for export and ingest.
Currently, handles are used as internal identifiers. DSpace uses the Handle
System from CNRI as the persistent identifier for each digital object. Handles
are resolved to actual URLs via a resolution service. Handles in DSpace (and
elsewhere) are currently implemented as HTTP URIs, but can also be modified
to work with future protocols. The Handle system supports existing bibliographic
identifiers such as ISBN or ISSN.

OAIS Compliance

OAIS also serves as a framework for developers of digital repository software.
The impact of the OAIS model on DSpace is apparent, even if DSpace has
evolved independently following several requirements. Data Management func-
tionality leverages DSpace Data Model for handling archived items, bitstreams
and metadata. Ingest is implemented by a batch ingester and a web submit Ul.
For Archival Storage, DSpace offers two means for storing bitstreams: the first
is in the file system on the server; the second is using SRB (Storage Resource
Broker), a data grid management system enabling distributed storage. Both are
achieved using a simple, lightweight API. SRB is a storage manager that of-
fers unlimited storage and straightforward means to replicate (in simple terms,
backup) the content on other local or remote storage resources. Concerning Ac-
cess, DSpace allows end-users to discover content in a number of ways, includ-
ing via external reference, such as a Handle (containing the AIP ID), searching
for one or more keywords in metadata or extracted full-text, browsing though ti-
tle, author, date or subject indices, with optional image thumbnails. DSpace’s
indexing and search module provides a configurable Lucene-based search en-
gine and a API which allows for indexing new content, regenerating the index,
and performing searches on the entire corpus, a community, or collection. Web
Ul enables views of different indexes and browsing. DSpace identifies two levels
of digital preservation: bit preservation, and functional preservation. Bit preser-
vation ensures that a file remains exactly the same over time (not a single bit
is changed) while the physical media evolve around it. Functional preservation
goes further: the file does change over time so that the material continues to
be immediately usable in the same way it was originally while the digital formats
(and the physical media) evolve over time. Some file formats can be functionally
preserved using straightforward format migration. Other formats are proprietary,
or for other reasons are much harder to preserve functionally. Compared to other
platforms, DSpace does not include, in the vanilla installation, tools for migrat-
ing Bitstreams from one format to the other, but these can be easily written using
DSpace Java API. Concerning Administration, DSpace offers also additional fea-
tures such as usage and system statistics, a checksum checker and reports. The
purpose of the checker is to verify that the content in a DSpace repository has
not become corrupted or been tampered with. The functionality can be invoked
on an ad-hoc basis from command line, or configured via cron or similar. Options
exist to support large repositories that cannot be entirely checked in one run.

Integration of For-
getlT Components

A plugin manager is provided, although deeper analysis on the source code is
required. An Add-on mechanism is provided to extend DSpace with additional
components. Extension and add-ons provided by the community are maintained
on the project wiki. DSpace supports DuraCloud as cloud storage solution, in
order to integrate PDS additional software and a plugin must be implemented.

Table 18: DSpace

Page 51 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Name RODA
Project Page http://www.roda-community.org/
License GNU LGPLv3

Short Description

RODA is a complete digital repository that delivers functionality for all the main
units of the OAIS reference model, is maintained by KEEP SOLUTIONS [40], and
is built on top of Fedora (see Table 21). RODA is based on open source technolo-
gies and is supported by existing standards such as METS, EAD and PREMIS.
A plug-in and task scheduling mechanism is provided to add more functionality
to the system (e.g. new preservation events, alerts, tools, etc.). The repository
natively supports normalization on ingest for different file formats. RODA can
be extended to comply with more file formats or better preservation action tools.
Support for migration-based preservation actions is built into the system. Preser-
vation actions and management within RODA is handled by a task scheduler,
defining the set of rules that trigger specific actions, and when these should take
place. Preservation actions include format conversions, checksum verifications,
reporting (e.g. to automatically send SIP acceptance/rejection emails), notifica-
tion events, etc. The basic services in RODA are provided by Fedora Commons,
the application framework that supports RODA. These services account for ele-
mentary tasks at the Data Management and Archival Storage level. Examples
of such services are: store and index a digital object, add a data stream to a
Fedora object, get a data stream, purge an object, find objects and list data
streams. RODA Core Services are responsible for carrying out more complex
tasks such as handling the ingest workflow, querying the repository in advanced
ways and carrying out administrative functions on the repository. RODA enables
tight integration of systems already existing in the client institution.

Source Code, Doc-
umentation, Commu-
nity

Source code available on GitHub [41], documentation available on project web
site [42], community is supported by KEEP SOLUTIONS [40] and institutions
adopting RODA.

Last Stable Release

1.2.0 (October 2013), assessment based on version 1.1.0 (July 2013)

Language, Runtime

Java, requires application server and RDBMS. Built on top of Fedora.

APIls and Protocols

REST and SOAP APIs, supports OAI-PMH

Data Model and
Packaging

RODA'’s content model is atomistic and very much PREMIS-oriented. Each in-
tellectual entity is described by an EAD-component metadata record. These
records are organized hierarchically in order to constitute a full archival descrip-
tion but are kept separately within the Fedora content model. Relationships
between EAD-components are created using Fedoras own RDF linking mech-
anism. Additionally, each leaf record (i.e. a file or an item) is linked to a rep-
resentation object, i.e. a Fedora object that embeds all the files and bitstreams
that compose the digital representation. Finally, each of these objects are linked
together by a set of PREMIS entities that maintain information about the digital
objects provenance and history of events (PO nodes). Each preservation event
that takes place inside the repository is recorded as a new preservation-event
node. Special events, like format migrations, establish relationships between
two preservation-representation nodes. These are called linking events. Each
preservation event is executed by an agent, whether this be a system user or an
automatically triggered software application. The agent that triggered the event
is recorded in PO agent nodes.

Content Types, For-
mats, Standards

RODA is capable of ingesting and normalizing (according to the preservation
plan in place) text documents, raster images, relational databases, video, and
audio. A plug-in mechanism enables RODA to support additional formats. RODA
follows open standards using EAD for description metadata, PREMIS for preser-
vation metadata, METS for structural metadata, and several standards for tech-
nical metadata (e.g. NISO Z39.87 for digital still images).

Page 52 (of 72)

www.forgetit-project.eu

http://www.roda-community.org/

ForgetlT

Deliverable D8.1

OAIS Compliance

RODA is composed of several functional modules supporting processes of a
common archival information system. Ingest is composed by a configurable
multi-step workflow that validates submitted information and also extracts tech-
nical metadata from ingested files. The ingest process also normalizes formats
according to the preservation policy in place and includes both automatic and hu-
man quality assurance steps. RODA supports the ingest of new digital material
as well as associated metadata in 4 distinct ways: (1) online submission (self-
archiving), (2) off-line submission using an client application, (3) batch import,
and (4) integration with third-party document management software via invoca-
tion of SOAP Services or client API. SIPs are submitted to a series of tests to
assess their integrity, completeness and conformity to the ingest policy. After
decompressing the SIP, the validation process performs different tasks, such as
virus check, METS envelope syntax check, SIP completeness check, file integrity
check, descriptive metadata check, preservation metadata check, representation
check (at least one representation exists within the SIP) and normalization. Rep-
resentations whose format do not conform to the preservation formats defined
by the preservation policy are automatically converted to the correct format. The
original representation is maintained by the repository. Descriptive metadata is
based on ISAD. RODA fully implements a configurable ingest workflow that not
only validate SIPs, but also enables manual appraisal by data management pro-
fessionals. Preservation management is handled by scheduled events. Preser-
vation actions include format converters, checksum verifications, reporting tools
(e.g. to automatically send SIP acceptance/rejection emails), etc. As a fallback
strategy, the system always retains the original versions of digital representa-
tions, so that an emulation preservation strategy still remains viable in the future.
RODA implements preservation planning through the possibility of running and
scheduling preservation actions right in the administration module. Administra-
tion components allow editing of the descriptive metadata and definition of rules
for preservation interventions such as scheduling integrity checks, initiate a for-
mat migration processes, or control the users or groups that are authorized to
perform certain actions in the repository. RODA includes administration features
such as user management, reporting, ingest workflow configuration, log viewer,
permissions management, etc. Quality assurance and preservation metadata
ensure authenticity of records while providing traceable records of all changes
and events that occur to a digital representation. All actions performed in the
repository are logged for security and accountability reasons. Access to data is
provided through embedded web viewers and downloads. Several versions of
the same data are provided, including the originally ingested digital representa-
tion. The consumer is able to browse over available collections to view or down-
load digital representations kept in the repository. Depending on the type of the
digital object, different viewers or disseminators are used. For example, text doc-
uments are delivered to consumers without resorting to any particular artifacts.
They are delivered in PDF format, so the consumer should use its favourite PDF
viewing application. Documents composed of several images (such as digitised
works) on the other hand are displayed in special Web viewing applications that
allow consumers to navigate through the pages of the representation. Data stor-
age is managed by Fedora Commons, the data layer backend. Data is stored on
the file system separately from the metadata.

Integration of For-
getlT Components

RODA exposes all its functionality via Web Services. Java APls are available to
integrate external components programmatically. Integration with cloud storage
requires customization of the underlying Fedora services.

Table 19: RODA

Page 53 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Name Archivematica
Project Page https://www.archivematica.org
License GNU AGPL v3

Short Description

Archivematica is a free and open source digital preservation system that is de-
signed to maintain standards-based, long-term access to collections of digital
objects. Archivematica uses a micro-services design pattern to provide an in-
tegrated suite of software tools that allows users to process digital objects from
ingest to access in compliance with the ISO-OAIS functional model. Users mon-
itor and control the micro-services via a web-based dashboard. Archivematica
uses METS, PREMIS, Dublin Core and other best practice metadata standards.
Archivematica implements format policies based on an analysis of the signifi-
cant characteristics of file formats. Archivematica is maintained by Artefactual
Systems [43], in collaboration with UNESCO and other institutions.

Source Code, Doc-
umentation, Commu-
nity

Source code available on GitHub [44], documentation on Archivematica wiki [45],
community supported by Artefactual Systems [43]

Last Stable Release

1.1 (May 2014), assessment based on version 0.10 (April 2013)

Language, Runtime

Python for implementing micro-services, requires Django MVC framework. Vir-
tual Appliance provided for different virtualization environments (VirtualBox,
VMWare, KVM)

APIls and Protocols

REST APIs, default access system is AtoM. Provides export to DSpace format.
Programmatic access to indexed AIP is available through Elasticsearch [46].

Data Model
Packaging

and

SIP based on METS, normalization process during ingestion. LoC Baglt format
(zip) used for AIP. Export to DSpace data model is supported, Archivematica
can act as dark-archive for DSpace, providing back-end preservation functional-
ity while DSpace remains the user deposit and access system. Archivematica
supports also DIP upload to AtoM and CONTENTdm services.

Content Types, For-
mats, Standards

METS supported for ingest and access. PREMIS and DC are supported stan-
dards for preservation and descriptive metadata. Tested with documents, pic-
tures and videos. Defines access and preservation formats for each media type
and includes normalization tools (mainly ffmpeg).

OAIS Compliance

Archivematica implements a micro-service approach to digital preservation. The
Archivematica micro-services are granular system tasks which operate on a con-
ceptual entity that is equivalent to an OAIS information package. The physical
structure of an information package will include files, checksums, logs, submis-
sion documentation, XML metadata, and others. These information packages
are processed using a series of micro-services. Micro-services are provided by
a combination of Archivematica Python scripts and one or more of the free, open
source software tools bundled in the Archivematica system. Each micro-service
results in a success or error state and the information package is processed ac-
cordingly by the next micro-service. There are a variety of mechanisms used
to connect the various micro-services together into complex, custom workflows.
Preservation plans available for different media types, based on analysis of the
significant characteristics of the files. The user dashboard provides interface
mapped onto OAIS functional entities. The web dashboard allow users to pro-
cess, monitor and control the Archivematica workflow processes. It is developed
using Python-based Django MVC framework. The Dashboard provides a multi-
user interface that will report on the status of system events and make it simpler
to control and trigger specific micro-services. This interface allows users to easily
add or edit metadata, coordinate AIP and DIP storage and provide preservation
planning information.

Page 54 (of 72)

www.forgetit-project.eu

https://www.archivematica.org

ForgetlT

Deliverable D8.1

OAIS Compliance
(continued)

Archivematica maintains the original format of all ingested files to support migra-
tion and emulation strategies. However, the primary preservation strategy is to
normalize files to preservation and access formats upon ingest. Normalizing is
the process of converting ingested digital objects to preservation and/or access
formats. In Archivematica the original objects are always kept along with their
normalized versions. Archivematica groups file formats into format policies (e.g.
text, audio, video, raster image, vector image, etc.). Archivematica’s preservation
formats must all be open standards. Additionally, the choice of formats is based
on community best practices, availability of free and open source normalization
tools, and an analysis of the significant characteristics for each media type. The
choice of access formats is based largely on the ubiquity of web-based viewers
for the file format. Not all files can be normalized on ingest because for example
there are no available Linux-based open source tools to handle the conversions
and/or no agreed upon preservation formats. In addition, some filetypes are not
necessarily in the best preservation format but are still so ubiquitous and well-
supported that they need not be normalized at the present time. In these cases,
the files are kept in their original formats. A Format Policy Registry is available
to implement rules of Preservation Planning.

Integration of For-
getlT Components

Archivematica provides a full-fledged preservation platform which can be in-
stalled and used out of the box. Extending Archivematica for integration with
external components requires modification of the source code. Default storage
mechanism is local file system.

Table 20: Archivematica

Page 55 (of 72)

www.forgetit-project.eu

ForgetlT Deliverable D8.1
Name Fedora
Project Page http://www.fedora-commons.org/
License Apache License, v2.0

Short Description

Fedora is a digital repository, developed and maintained under the stewardship
of the not-for-profit organization DuraSpace [38]. The Fedora Repository Project
provides a robust open source software system based on a core repository ser-
vice (exposed as web-based services with well-defined APIs) and an array of
supporting services and applications including search, messaging and adminis-
trative clients. Fedora aims at ensuring that digital content is durable by provid-
ing features that support digital preservation. The FedoraCommons refers to the
community surrounding the Fedora Repository Project.

Source Code, Doc-
umentation, Commu-
nity

Source code available on GitHub [47], documentation on Fedora Commons
wiki [48], project community supported by DuraSpace, a registry of institutions
adopting Fedora is maintained.

Last Stable Release

3.7.1 (October 2013), 4.0 Beta 1 (June 2014), assessment based on version
3.7.0 (Sept. 2013)

Language, Runtime

Java, requires application server and RDBMS

APIls and Protocols

REST and SOAP APIs, supports OAI-PMH

Data Model and
Packaging

Fedora Digital Object Model [49], digital objects stored internally using FOXML.

Content Types, For-
mats, Standards

Fedora Digital Object Model supports videos, images documents and others.
FOXML format is preferred schema for ingest and access, METS (using Fedora
extension) supported for ingest and access, also MPEG-21 DIDL.

OAIS Compliance

Ingest and Access available thorugh REST or SOAP APIs or Web Ul. Batch
ingestion supported. Supported SIP formats are FOXML or METS. Export for-
mats are FOXML, METS and ATOM. Export to new archive or purging existing
object are supported. Search possible using Web Ul or REST APIs, using iden-
tifier or DC metadata. Data Management based on own object model, specific
component for archive Administration is available. Archival Storage implemented
by Low Level Storage interface, supporting disks and cloud services (experimen-
tal). Periodic activities for Preservation Planning are supported at the datastream
level (e.g. checksums). Datastreams can be updated or migrated. Descriptive
metadata can be modified, too.

Integration of For-
getlT Components

A plugin or adapter to integrate with PDS is required. DuraSpace provide their
own cloud solution (DuraCloud), but it is not free. Integration of other compo-
nents delivered as REST services or command line tools is possible.

Table 21: Fedora

Page 56 (of 72)

www.forgetit-project.eu

http://www.fedora-commons.org/

ForgetlT

Deliverable D8.1

Name P4
Project Page http://prestoprime.eurixgroup.com/p4
License GPLv3

Short Description

P4 is the preservation platform developed by EU FP7 PrestoPRIME project [50].
P4 implements the main functional entities of the OAIS model for an archive man-
aging AV content and is made up of three main components: (1) core libraries,
implementing OAIS components for storage, metadata management, ingest, ac-
cess, administration and preservation actions; (2) web server, providing REST
interfaces for interacting with the archive; (3) web Ul, providing ingest, access
and administrative functionalities according to the user profile. The web server
provides interfaces for ingest, access and administration. The user can ingest
SIP files into the platform, get information about the status of the submitted jobs
and of the whole system, search for AIP available in the archive, and get access
to the DIP, through the web interface. The user interface manages local users
and can connect to multiple P4 instances with different user identifiers, each as-
sociated to a specific role (consumer, producer, administrator) for that platform.
The external tools and services can be integrated using a plugin framework, the
motivations for this being twofold: on one hand it provides a flexible way to in-
tegrate new components (e.g. to execute some specific steps during ingestion),
on the other hand the platform and the core components are decoupled from
specific tools or scenarios and P4 users have access to an open framework
which can be used out of the box, by configuring a minimum set of parameters.
P4 includes a workflow engine, a lightweight execution environment to config-
ure custom tasks based on external tools and services, exploiting the APIs of
core modules. The external tools used to implement a specific workflow can be
deployed within a P4 plugin. Tools developed within the project and integrated
in P4 cover metadata extraction (e.g. MXF tools), quality assessment, storage
(disks via NFS or CIFS, LTO tapes, shared or federated storage systems such
as iRODS and MServe), emulation (Multivalent), SLA and monitoring, rights,
search and indexing (Solr), AV material segmentation and access, format mi-
gration, fixity checks. Concerning the storage configuration, different workflows
have been tested in PrestoPRIME. In particular the configuration with two copies
of the master quality file was implemented either with LTO tapes (two copies on
two different tapes) or with iRODS as policy-driven storage (the automatic replica
rule, with periodic fixity checks was defined).

Source Code, Doc-
umentation, Commu-
nity

Source code available on GitHub [51], documentation available on the web
site [52], currently the platform is part of the PrestoCentre tools library [53]

Last Stable Release

2.2.0 (Dec. 2012)

Language, Runtime

Java, Servlet Container required, no RDMS (XML DB)

APIls and Protocols

REST APIs, supports OAI-PMH.

Data Model and
Packaging

The data model makes use of METS as the main wrapper format for descrip-
tive and technical metadata, as well as for mapping AV resources within the
AIP. Other metadata standards are supported, such as MPEG-7 for technical
metadata, PREMIS for preservation events, MPEG-21 for rights representation,
DublinCore for descriptive metadata and others. P4 also supports DNX, a meta-
data format built on top of PREMIS vocabulary, used in Rosetta. Using P4 plu-
gins, virtually any metadata standard can be used in the AIP. Access interface
supports also OAI-PMH protocol. The data model is tailored to broadcast en-
vironment (editorial entities, master and browsing qualities, B2B contracts). No
compressed formats such as zip, Baglt or tarball used for AIP, METS contains
references to metadata and AV files.

Page 57 (of 72)

www.forgetit-project.eu

http://prestoprime.eurixgroup.com/p4

ForgetlT

Deliverable D8.1

Content Types, For-
mats, Standards

Focus on videos, but other content types can be supported defining new work-
flows. Based on METS, supports DC, MPEG-21 CEL, MPEG-7 AVDP, DNX,
PREMIS.

OAIS Compliance

Ingest and access provided by web Ul or REST APIs, using METS as unique for-
mat for all OAIS information packages, common to other platforms. An advanced
search engine based on Solr allows indexing of different descriptive and techni-
cal metadata. Several solutions are available for Archival Storage, supporting
local and distributed storage. Preservation Planning is provided by integrated
tools for fixity checks or format migration, no scheduler is implemented in the
platform, makes use of external systems (e.g. iRODS). The index is stored in a
fast native-XML DB and periodic triggers are executed for backup and integrity
checks of the AIP XML files. Additional preservation operation are provided by
storage solutions (e.g. the LTO component). Data Management and Administra-
tion are provided by the P4 web Ul, including monitoring of jobs and workflows.

Integration of For-
getlT Components

The favourite integration mechanism is making use of REST interfaces over
HTTP, to get loose coupling and reduce dependencies. P4 provides a plug-in
mechanism to integrate external components or services in the workflow. In or-
der to integrate cloud services, a new storage plugin should be implemented and
added to the storage layer (if we use REST APIs this should be straightforward).

Table 22: P4

Page 58 (of 72)

www.forgetit-project.eu

ForgetlT

Deliverable D8.1

Name iRODS
Project Page https://www.irods.org
License BSD

Short Description

iRODS is the integrated Rule-Oriented Data-management System, a community-
driven, open source, data grid software solution. It is a policy-based data man-
agement system, implementing a micro-services pattern, based on rule engine.
iRODS helps manage (organize, share, protect, and preserve) large sets of com-
puter files. Collections can range in size from moderate to a hundred million files
or more totaling petabytes of data. The requirements to manage large collec-
tions of data include both a number of generic capabilities and diverse features
that depend on the details of different applications. iRODS is also highly con-
figurable and easily extensible for a very wide range of use cases through user-
defined micro-services, without having to modify core code. iRODS is used by
many projects and teams, small and large, national and international, computer
technologists and non. iRODS includes a set of features that blend together
well and augment each other to form a comprehensive whole. iRODS major
features include high-performance network data transfer and a unified view of
disparate data. iRODS uses unique logical names that are separate from the
names as stored physically, providing a global logical name-space via the iCAT
Metadata Catalog in a DBMS to keep track of the names and locations of files
so users don’t have to. iIRODS also supports a wide range of physical storage,
including Unix and Windows files systems, archival storages systems (HPSS,
tapes), etc. iIRODS provides easy, automated replication and backup to multi-
ple storage devices/locations at the physical level. So, users access the files
via the logical names and the system finds and gets the physical files. iRODS
also manages metadata, both system (automatic) and user-defined, and stored
in the iCAT Metadata Catalog running in a DBMS. Users can query the system
to find, use, verify, etc. files with particular attributes (metadata). iRODS pro-
vides fine-grained controlled access, by user or group. iRODS innovative Rule
Engine applies local and community policies expressed as rules and executed
via server-side micro-services. Rules invoke other rules and/or micro-services
making the system highly configurable for site-specific needs and automated for
cost-effective administration of today’s mushrooming data collections. Workflows
can be executed as part of normal operation (e.g. a Rule can be run as a file is
initially stored to automatically make an offsite replica) or as delayed or periodic
Rules. iRODS can operate as a complete stand-alone system (utilizing storage
systems, database systems, and networks underneath) and also as middleware
where higher-level and application-specific software makes use of iRODS as part
of its infrastructure.

Source Code, Doc-
umentation, Commu-
nity

Source code and documentation available on the project wiki [54], supported
by the DICE group of the University of North Carolina at Chapel Hill and the
University of California San Diego.

Last Stable Release

4.0 (March 2014), assessment based on version 3.3 (July 2013)

Language, Runtime

C, Perl, Shell. Provides a service running the catalog, other nodes can be dis-
tributed, requires a RDBMS.

APIls and Protocols

iRODS provides GUI, Web, WebDAV, command line interfaces, as customized
shell commands used for managing content and administering the archive, and
also a Java API (Jargon) allowing programmatic integration in external systems.
Development of rules for specific tasks requires a custom language.

Page 59 (of 72)

www.forgetit-project.eu

https://www.irods.org

ForgetlT

Deliverable D8.1

Data Model and
Packaging

Data Virtualization is the underlying idea in the iRODS data grid system. In-
stead of a physical naming, iRODS adopts a virtual (or logical name) for ev-
ery entity that interface with user or application. The mapping from the logical
name to physical name is maintained persistently in the Metadata Catalog and
the mapping is done at run time by the Virtualization sub-system. The virtu-
alization pervades all aspects of iRODS and is seamlessly integrated into the
various modules. iRODS provides different types of data transfer mechanism.
iRODS can get and put files from a remote storage system (which is fronted by
an iRODS server) or can transfer from one storage to another (as a third-party
transfer). The access of the files can be either as a single file transfer or as a
whole collection/sub-collection transfer. It can transfer these files in bulk mode
(when several small files are being transferred) or in parallel mode when a large
file is being transferred. All these different options are optimally selected de-
pending upon the file sizes and the number of files being transferred. iRODS
data model defines logical name spaces for files (POSIX, Grid and collection at-
tributes), users, resources, rules, micro-services and states. A resource, or stor-
age resource, in iRODS terminology, is a software/hardware system that stores
data. An iRODS resource is a logical mapping of a “resource name” to a number
of physical attributes that define the resource. The iRODS clients/servers can
then operate on remote or local data on different types of resources through a
common interface. Currently, iRODS supports 3 resource types - unix file sys-
tem, HPSS, and Amazon S3.

Content Types, For-
mats, Standards

Any kind of file can be virtually stored. Provides support for metadata, search
and other operations on the content.

OAIS Compliance

iRODS software was designed to allow curators utilising heterogeneous stor-
age and computing facilities to define policies without being concerned with the
technical detail of how the system implements those policies and without hav-
ing to respond to changes in technical infrastructure. iRODS uses a data grid
architecture, running server software and a rule Engine on each server that will
become part of the virtual repository. A separate, unique iRODS iCAT Meta-
data Catalog uses a database to track descriptive and preservation metadata.
Users determine workflows and automated tasks that the Rule Engine carries
out regardless of the originating server. iRODS was not conceived as an imple-
mentation of the OAIS model, but to fullfil other requirements for a rule-oriented
data management system leveraging grid technologies in the context or research
and academic institutions. Nevertheless, iRODS is widely used in the research
community, in high performance computing projects, and in preservation envi-
ronments and digital libraries. Several principles borrowed from OAIS could be
implemented in iRODS. For example, OAIS describes a standard model for ac-
cess to information repositories that could be ported on top of iRODS. Within the
iRODS data grid, standard functions (micro-services) are defined which can be
composed into workflows to support procedures that are applied to the contents
of the information repository. Data Management procedures are controlled by
policies that are managed in a distributed rule engine.

Integration of For-
getlT Components

iRODS provides a mechanism for integrating external components as additional
micro-services or rules. Additional components for ingest and access should be
developed on top of iRODS, unless some of the add-ons developed by the com-
munity already fits with ForgetIT requirements. iRODS is already based on Data
Grid and provides a policy-driven storage, enabling micro-services and rules run-
ning close to the data. This feature conflicts with one of the expected outcomes
of the project, namely the cloud storage services, which should provide analogue
features using the Storlet technology.

Table 23: iRODS

Page 60 (of 72)

www.forgetit-project.eu

ForgetlT Deliverable D8.1

Other solutions, projects and initiatives

Several EU projects have been funded in the field of digital preservation. Almost all
projects developed tools for digital preservation which have been partially or totally de-
livered as open source. The outcomes of such projects have also provided valuable
feedbacks to the digital preservation community and have been often used to support the
initial development of popular digital preservation systems. Typically, the main limitation
of such tools is due to the short lifetime of the supporting projects, which have the primary
focus of demonstrating the project objectives rather than providing stable software which
is suitable for usage out of the box by others. Software engineering and maintenance
require resources which cannot always be guaranteed after the project ends.

After the initial phase where the focus of projects like DELOS [55] was to raise awareness
on the digital preservation issues, different initiatives such as the Digital Curation Cen-
tre and Digital Preservation Europe started, several projects have been funded focusing
on research and development of digital preservation technologies, processes, audit and
other technical aspects. Such group includes for example CASPAR [56], PLANETS [57],
Shaman [58], PrestoPRIME [50], SCAPE [59], ENSURE [24], TIMBUS [60] and many
others. Some Coordinated Actions such as Presto4U [33] have also been funded. Sev-
eral national archives worldwide have developed solutions for the digital preservation. For
example DPSP [61] is a collection of software applications supporting the goal of digital
preservation developed by National Archives of Australia, while DVA-Profession [62] is a
complete solution for digitizing video for archiving purposes.

Several initiatives such as the Digital Preservation Coalition (DPC) [63], the PrestoCen-
tre [64] or The Planets Foundation [65] or APARSEN [66] (just to mention a few), try
also to support the community in maintaining catalogs of software tools and libraries for
the digital preservation. For example DPC provides technology watch and training, sup-
porting the dissemination and adoption of best practices and technologies in the digital
preservation community and the PrestoCentre library provides a list of processes, tools
and techniques available to assist in the digital preservation of audiovisual materials.

The non-exhaustive list above is just intended to point out that a lot of tools, libraries and
platforms have been produced by research projects, initiative and institutions, not only in
Europe, hence within ForgetlIT the assessment of candidate solutions for implementing a
preservation system can only focus on widely adopted and supported applications.

Page 61 (of 72) www.forgetit-project.eu

ForgetlT

Deliverable D8.1

| ID [Assessment Criteria | DSpace | Archivematica | RODA | Fedora | P4 | iRODS |
M1 | Open source vV Vv Vv v/ vV vV
M2 | Out of the box Vv Vv X X X v
M3 | Community support V V/ X vV X v/
M4 | Stability Vv Vv X vV X vV
M5 | Interoperability vV vV V V X X
M6 | Java technologies Vv X Vv vV V X
M7 | Versions Vv X Vv v/ X X
M8 | Ingest Procedures vV X vV Vi v v
D1 | Metadata Registry v Vv Vv N4 X X
D2 | Format Registry vV Vv V4 Vv Vv vV
D3 | Ingest Queue vV vV Vv v/ vV vV
O1 | Ingest GUI vV vV V V V X
M9 | Access Procedures vV X V V X X
M10 | Accounting vV vV Vv v vV V
D4 | Search V vV Vi vV V v
D5 | Objects Dissemination Vv X Vv Vv X X
D6 | Metadata Dissemination V X V Vv X X
D7 | Federation V vV V vV X V
D8 | Extensibility V v vV vV vV vV
M11 | Descriptive Information vV V V V X X
M12 | Database Management Vv Vv Vv v/ vV V
M13 | Virus Check vV Vv Vv Vv X Vv
M14 | Standards V V/ V vV vV X
D9 | Audit Trail Vi Vi v v Vi Vi
D10 | Content Quality Control X X X X X X
02 | Reporting V vV Vv v/ X V
O3 | Metadata and Format Mi- V V V X v X
gration
O4 | Dashboard vV V Vv v/ vV V
M15 | Object Identification Vi Vi Vi vV Vi Vi
M16 | Cloud Storage Vv X X X X v/
M17 | Original Content Vv Vv V4 V4 Vv Vv
D11 | Content Organization Vv Vv V Vv X V
D12 | Object Type Support Vv Vv V V X V
D13 | No Limits Vv Vv Vv v/ v/ vV
O5 | Timeline X X X X X X
O6 | Logical Storage Organi- Vi Vi Vi Vi Vi Vi
zation
O7 | Normalization X Vv v X v vV

Table 24: Preservation Platforms Assessment

Page 62 (of 72)

www.forgetit-project.eu

ForgetlT Deliverable D8.1

Selection of the Digital Repository: DSpace

Taking into account the assessment results reported in Table 24, among all candidate
solutions for the implementation of the Digital Repository, we selected DSpace.

DSpace is stable and supported by a huge community of users and developers and has
been adopted by about one thousand institutions worldwide as the reference solution
for their institutional repositories. The maturity of the project and the stability of the last
release allows usage out of the box, the documentation (including developer guide) is
complete, the source code is available as open source. DSpace is developed using Java
EE technologies. One difference with respect to other solutions is that DSpace already
supports cloud storage services as backup for stored content. Functionalities for backup
of the whole repository configuration and advanced features for content management
are also valuable. Concerning the compliance to OAIS model, this is still progressing,
mainly for what concerns aspects related to Preservation Planning, although in the spe-
cific ForgetIT context a preservation aware storage (Cloud Storage Service) will be used
to actively preserve and curate archived content.

Fedora, the other solution from DuraSpace, is not conceived as an out of the box im-
plementation and the amount of work required to customize and prepare the platform is
still considerable. RODA, which is built on top of Fedora, provides additional features
related to the actual preservation of the contents and is strongly OAIS-oriented, it is a rel-
atively new project which could benefit from wider adoption in the future. Archivematica,
on the other hand, is strongly focused on OAIS and its customization in terms of work-
flows and formats requires deep knowledge of source code and provides no support for
cloud storage. One important feature is that Archivematica can act as a dark archive for a
DSpace repository, providing back-end preservation functionality while DSpace remains
the user deposit and access system, supporting the common interoperability standards
used in the Institutional repository domain, such as OAI-PMH [67], SWORD [68] and
OpenSearch [69]. Interoperability is important when choosing a specific application for
the PoF Framework, because the adoption of the PoF Framework by new users would
be easier. P4 and iRODS, for different reasons, cannot be considered equivalent to the
previous solutions, from the ForgetlT point of view. The former is still in a early prototype
status and is mainly focused on videos, although it integrates several useful technologies
for AV digital preservation, while the latter was not conceived as a digital repository but as
an advanced storage solution (policy-driven storage), with many features (including rules
and processes executed close to data) overlapping with the Cloud Storage Service.

It is worth noting that adopting DSpace is not a constraint because SIP and DIP format is
based on METS, in common with all the other platforms mentioned before, the only dif-
ferences being related to the specific profile adopted. In addiction, the Digital Repository
REST APIs are defined within the project and are not the ones provided by the specific
platform: when moving to another Digital Repository implementation, only the component
responsible for processing REST requests and for interacting with the Digital Repository
should be modified, while all other components in the PoF Middleware would be the same.

Page 63 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

7.2 PoF Middleware Solutions

The PoF Middleware plays a crucial role in the overall ForgetIT architecture, since it pro-
vides the bridge between the Active Systems and the Preservation System, as already
described before. Almost all components developed in the project by the technical WPs
will be integrated in the PoF Middleware.

For the implementation of the PoF Middleware, we will adopt the following approach:
for the early integration, targeting the first release of the PoF Framework, we will use a
lightweight solution, which should allow an easy integration of a few components in order
to demonstrate the two priority workflows described in Section 4.2; then we will evaluate
more complex and robust middleware solutions, depending on the requirements.

Different enterprise solutions are available, ranging from full-fledged integration suites,
to integration platforms, application servers or simple Enterprise Service Bus (ESB) im-
plementations. Even if several commercial platforms implementing an enterprise-level
middleware are available, the approach adopted in the project is to take into account only
free and open source solutions, supported by an active community of developers.

Concerning the evaluation criteria, the PoF Middleware should provide, among other func-
tionalities, a communication layer for all components (the ESB), as well as the function
to integrate components and to manage different business processes. A REST interface
should be provided, to integrate with other components of the architecture.

The main advantage of using an ESB component in the middleware is that it can act
as a transit system for carrying data between applications which can be in the enter-
prise or spread across the web, in this way different applications can communicate with
each other using a shared protocol. The ESB provides service creation and hosting, ser-
vice mediation, message routing and data transformation, with exchange of data across
varying formats and transport protocols. The ESB architecture is adopted by several in-
tegration frameworks and the message oriented approach has become the reference for
implementing the concept of ESB (see deliverable D5.2 [12]).

The middleware solutions listed below will be considered as possible candidates for the
implementation of the PoF Middleware.

Mule ESB [70] is a lightweight Java-based ESB and integration platform enabling quick
and easy connection of applications and data exchange among them. As any ESB solu-
tion, it aims at providing an easy integration of existing systems, regardless of the different
technologies that the applications use. Examples of such technologies include JMS, Web
Services, JDBC, HTTP, and more.

JBossESB [71] is part of the JBoss Enterprise SOA Platform. The software is based
on Enterprise Application Integration (EAI) principles and is a middleware used to con-
nect systems together, especially non-interoperable systems, providing business process
monitoring and management, connectors, transaction manager, security, application con-
tainers, messaging services, naming and directory service and others.

Page 64 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

Apache ServiceMix [72] is an open source integration container that unifies the features
and functionality of several other components into a runtime platform, which can be used
to build integration solutions. It provides a complete, enterprise ready ESB powered by
OSGi Alliance, released under Apache License v2. Apache ServiceMix provides reliable
messaging, routing and enterprise integration patterns, RESTful web services, a workflow
engine based on BPEL, a JMS component and an orchestrator.

Taverna [73] is an open source and domain-independent workflow management system.
The Taverna suite is written in Java and includes the Taverna Engine (used for enact-
ing workflows) that powers both the Taverna Workbench (the desktop client application)
and the Taverna Server (which allows remote execution of workflows). Taverna is widely
adopted to implement digital preservation workflows and has been used also in other
projects related to digital preservation, such as SCAPE [59].

Two other solutions could be also considered, even if they implement different paradigms,
because they provide useful features.

Apache UIMA [74] is an Unstructured Information Management (UIM) application, a soft-
ware system able to analyze large volumes of unstructured information in order to dis-
cover knowledge that is relevant to an end user. An example UIM application might ingest
plain text and identify entities, such as persons, places, organizations, or relations. UIMA
provides capabilities to wrap components as local or remote processors, to define data
structures, data flows and workflows to implement processing pipelines. It can scale to
very large volumes by replicating processing pipelines over a cluster of networked nodes.

Cloud Foundry [75] is an open source cloud computing Platform as a Service (PaaS),
providing a choice of clouds, developer frameworks and application services, aiming at
making faster and easier to build, test, deploy and scale applications. Cloud Foundry is
developed by VMware and released under the terms of the Apache License 2.0.

The middleware solutions mentioned above will be analyzed for implementing the PoF
Middleware and the results will be reported in deliverables D5.2 [12] and D8.3 [13].

Page 65 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

8 Summary and Future Work

In this deliverable we have described the architecture of the PoF Framework, which is
composed by three layers: the Active Systems (i.e. the user applications), the PoF Mid-
dleware and the Preservation System.

The main systems and components developed by the technical WPS and described here
will be integrated in the overall framework. Moreover some candidate solutions for imple-
menting two main building blocks of the architecture, namely the PoF Middleware and the
Digital Repository, have also been presented.

For each component the role in the overall framework, the main technologies and inter-
faces have been discussed. The interfaces and the protocols used to integrate compo-
nents throughout the layers are also described. A preliminary plan for integrating and
testing the different components has been outlined and the setup of the testbed environ-
ment has been described.

In the next WP8 deliverables, the PoF Reference Model and the PoF Framework imple-
mentation based on the present architecture will be reported. In particular, deliverable
D8.3 [13] will describe the first release of the PoF Framework, with integrated compo-
nents, supported workflows and content types as well as the adopted solutions for the
Preservation System and the PoF Middleware.

The first release of the PoF Framework will be tested and the collected feedbacks will be
included in the second release, reported in deliverable D8.4 [76].

Page 66 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

Acronyms

AIP Archival Information Package. 14, 16, 31, 32, 47, 50, 51, 54, 57, 58
AIS Archival Information System. 13

CMIS Content Management Interoperability Services. 11, 13, 20, 30, 31, 41
CMS Content Management System. 5, 10, 11, 17, 20, 41

DIP Dissemination Information Package. 14, 30, 54, 57, 63
ESB Enterprise Service Bus. 17, 18, 23, 44, 64, 65

MB Memory Buoyancy. 25, 36

MDA Model Driven Architecture. 7, 10

METS Metadata Encoding and Transmission Standard. 15, 31, 47, 50, 52-54, 56-58, 63
MOM Message Oriented Middleware. 13

OAIS Open Archival Information System. 3, 5, 7-10, 14-16, 18, 31, 32, 44, 45, 48,
51-58, 60, 63

PDS Preservation DataStores. 16, 31, 32, 51, 56

PIMO Personal Information Model. 19, 28, 41, 44

PoF Preserve-or-Forget. 3, 5-15, 17-31, 33-36, 3945, 48, 63-66
PV Preservation Value. 25, 35, 36

SIP Submission Information Package. 14, 15, 30, 35, 52-54, 56, 57, 63
TRL Technology Readiness Level. 48
UML Unified Modeling Language. 7, 9—11, 33

WYSIWYG What You See Is What You Get. 20

Page 67 (of 72) www.forgetit-project.eu

ForgetlT Deliverable D8.1

References

[1] CCSDS. Reference Model for an Open Archival Information System (OAIS). http:
//public.ccsds.org/publications/archive/650x0m2.pdf, June 2012.
Retrieved 31 July 2014.

[2] ForgetlT Project. Deliverable D3.1: Report on Foundations of Managed Forgetting,
August 2013.

[3] ForgetlT Project. Deliverable D4.1: Information Analysis, Consolidation and Con-
centration for Preservation — State of the Art and Approach, July 2013.

[4] ForgetlT Project. Deliverable D5.1: Foundations of Synergetic Preservation, July
2013.

[5] ForgetlT Project. Deliverable D6.1: State of the Art and Approach for Contextualiza-
tion, July 2013.

[6] ForgetIT Project. Deliverable D7.1: Foundations of Computational Storage Services,
July 2013.

[7] ForgetlT Project. Deliverable D9.1: Application Use Cases & Requirements Docu-
ment, August 2013.

[8] ForgetlT Project. Deliverable D3.2: Components for Managed Forgetting — First
Release, February 2014.

[9] ForgetlT Project. Deliverable D4.2: Information Analysis, Consolidation and Con-
centration Techniques, and Evaluation — First Release, February 2014.

[10] ForgetIT Project. Deliverable D6.2: Contextualisation Tools — First Release, February
2014.

[11] ForgetIT Project. Deliverable D7.2: Computational Storage Services — First Release,
February 2014.

[12] ForgetlT Project. Deliverable D5.2: Workflow Model and Prototype for Transition
between Active System and AlS, February 2014.

[13] ForgetlT Project. Deliverable D8.3: Preserve-or-Forget Framework — First Release,
August 2014.

[14] ForgetlT Project. Deliverable D8.2: Preserve-or-Forget Reference Model — Initial
Model, September 2014.

[15] ForgetlT Project. Deliverable D9.2: Use Cases & Mock-up Development, February
2014.

[16] ForgetlT Project. Deliverable D10.2: Application Mockups and Prototypes, February
2013.

Page 68 (of 72) www.forgetit-project.eu

http://public.ccsds.org/publications/archive/650x0m2.pdf
http://public.ccsds.org/publications/archive/650x0m2.pdf

ForgetlT Deliverable D8.1

[17] OASIS. Content Management Interoperability Services (CMIS). https://www.
oasis-open.org/committees/cmis. Retrieved 31 July 2014.

[18] David Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004.

[19] Library of Congress. Metadata Encoding and Transmission Standard (METS).
http://www.loc.gov/standards/mets. Retrieved 31 July 2014

[20] CCSDS. Audit and Certification of Trustworthy Digital Repositories (TDR).
http://public.ccsds.org/publications/archive/652x0ml.pdf,
September 2011. Equivalent to ISO 16363:2012, retrieved 15 July 2014.

[21] OpenStack. Open Source Cloud Computing Software. https://www.
openstack.org. Retrieved 31 July 2014

[22] TYPOS. Source Code Repository. http://typo3.org/about/
typo3-the-cms. Retrieved 31 July 2014

[23] ObjectDB. http://www.objectdb.com. Retrieved 31 July 2014.

[24] ENSURE Project. http://ensure-fp7-plone.fe.up.pt/site. Retrieved 31
July 2014.

[25] ENSURE Project. PDS Interface Specification. http:
//ensure—fp7-plone.fe.up.pt/site/deliverables/
pds—cloud-external-interface-specification/at_download/file.
Retrieved 31 July 2014.

[26] Object Management Group (OMG). Unified Modeling Language (UML). http://
www.uml.org. Retrieved 31 July 2014.

[27] Kernel-based Virtual Machine (KVM). http://www.linux-kvm.org. Retrieved
31 July 2014.

[28] Uwe M. Borghoff, Peter Rddig, Lothar Schmitz, and Jan Scheffczyk. Long-term
Preservation of Digital Documents. Springer, 2006.

[29] The Technology Watch Report Institutional Repositories in the Con-

text of Digital Preservation. http://www.dpconline.org/advice/
technology-watch-reports?g=technology+watch+report. Retrieved
31 July 2014.

[30] Trusted Digital Repositories: Attributes and Responsibilities. http:

//www.oclc.org/content/dam/research/activities/trustedrep/
repositories.pdf?urlm=161690. Retrieved 31 July 2014.

[31] An Audit Checklist for the Certification of Trusted Digital Repositories. http:
//library.oclc.org/cdm/ref/collection/p267701coll33/1d/408. Re-
trieved 31 July 2014.

Page 69 (of 72) www.forgetit-project.eu

https://www.oasis-open.org/committees/cmis
https://www.oasis-open.org/committees/cmis
http://www.loc.gov/standards/mets
http://public.ccsds.org/publications/archive/652x0m1.pdf
https://www.openstack.org
https://www.openstack.org
http://typo3.org/about/typo3-the-cms
http://typo3.org/about/typo3-the-cms
http://www.objectdb.com
http://ensure-fp7-plone.fe.up.pt/site
http://ensure-fp7-plone.fe.up.pt/site/deliverables/pds-cloud-external-interface-specification/at_download/file
http://ensure-fp7-plone.fe.up.pt/site/deliverables/pds-cloud-external-interface-specification/at_download/file
http://ensure-fp7-plone.fe.up.pt/site/deliverables/pds-cloud-external-interface-specification/at_download/file
http://www.uml.org
http://www.uml.org
http://www.linux-kvm.org
http://www.dpconline.org/advice/technology-watch-reports?q=technology+watch+report
http://www.dpconline.org/advice/technology-watch-reports?q=technology+watch+report
http://www.oclc.org/content/dam/research/activities/trustedrep/repositories.pdf?urlm=161690
http://www.oclc.org/content/dam/research/activities/trustedrep/repositories.pdf?urlm=161690
http://www.oclc.org/content/dam/research/activities/trustedrep/repositories.pdf?urlm=161690
http://library.oclc.org/cdm/ref/collection/p267701coll33/id/408
http://library.oclc.org/cdm/ref/collection/p267701coll33/id/408

ForgetlT Deliverable D8.1

[32] Report for the DCC/DPC Workshop on Cost Models for Preserving Digital As-
sets. http://www.dpconline.org/graphics/events/050726workshop.
html. Retrieved 31 July 2014.

[33] Presto4U Project. https://www.prestocentre.org/4u. Retrieved 31 July
2014.

[34] Technology Readiness Level (TRL). http://en.wikipedia.org/wiki/
Technology_readiness_level. Retrieved 31 July 2014.

[35] DSpace SourceForge Repository. https://sourceforge.net/projects/
dspace/files. Retrieved 31 July 2014.

[36] DSpace GitHub Repository. https://github.com/DSpace/DSpace. Retrieved
31 July 2014.

[37] DSpace Documentation. https://wiki.duraspace.org/display/DSDOC3x/
DSpace+3.x+Documentation. Retrieved 31 July 2014.

[38] DuraSpace. http://www.duraspace.org. Retrieved 31 July 2014.

[39] DSpace Data Model. https://wiki.duraspace.org/display/DSDOC3x/
Functional+Overview#FunctionalOverview-DataModel. Retrieved 31 July
2014.

[40] Keep Solutions. http://www.keep.pt. Retrieved 31 July 2014.

[41] RODA GitHub Repository. https://github.com/keeps/roda. Retrieved 31
July 2014.

[42] RODA Documentation. https://github.com/keeps/roda/wiki/
Developer—guide. Retrieved 31 July 2014.

[43] Artefactual Systems. http://www.artefactual.com. Retrieved 31 July 2014.

[44] Archivematica GitHub Repository. https://github.com/artefactual/
archivematica. Retrieved 31 July 2014.

[45] Archivematica Documentation. https://www.archivematica.org/wiki/
Documentation. Retrieved 31 July 2014.

[46] Elasticsearch. Open Source Distributed Real Time Search & Analytics. http://
www.elasticsearch.org. Retrieved 31 July 2014.

[47] Fedora GitHub Repository. https://github.com/fcrepo. Retrieved 31 July
2014.

[48] Fedora Documentation. https://wiki.duraspace.org/display/
FEDORA37/Fedora+3.7+Documentation. Retrieved 31 July 2014.

Page 70 (of 72) www.forgetit-project.eu

http://www.dpconline.org/graphics/events/050726workshop.html
http://www.dpconline.org/graphics/events/050726workshop.html
https://www.prestocentre.org/4u
http://en.wikipedia.org/wiki/Technology_readiness_level
http://en.wikipedia.org/wiki/Technology_readiness_level
https://sourceforge.net/projects/dspace/files
https://sourceforge.net/projects/dspace/files
https://github.com/DSpace/DSpace
https://wiki.duraspace.org/display/DSDOC3x/DSpace+3.x+Documentation
https://wiki.duraspace.org/display/DSDOC3x/DSpace+3.x+Documentation
http://www.duraspace.org
https://wiki.duraspace.org/display/DSDOC3x/Functional+Overview#FunctionalOverview-DataModel
https://wiki.duraspace.org/display/DSDOC3x/Functional+Overview#FunctionalOverview-DataModel
http://www.keep.pt
https://github.com/keeps/roda
https://github.com/keeps/roda/wiki/Developer-guide
https://github.com/keeps/roda/wiki/Developer-guide
http://www.artefactual.com
https://github.com/artefactual/archivematica
https://github.com/artefactual/archivematica
https://www.archivematica.org/wiki/Documentation
https://www.archivematica.org/wiki/Documentation
http://www.elasticsearch.org
http://www.elasticsearch.org
https://github.com/fcrepo
https://wiki.duraspace.org/display/FEDORA37/Fedora+3.7+Documentation
https://wiki.duraspace.org/display/FEDORA37/Fedora+3.7+Documentation

ForgetlT Deliverable D8.1

[49] Fedora Digital Object Model. https://wiki.duraspace.org/display/
FEDORA37/Fedora+Digital+Object+Model. Retrieved 31 July 2014.

[50] PrestoPRIME Project. http://www.prestoprime.eu. Retrieved 31 July 2014.

[51] P4 GitHub Repository. https://github.com/prestoprime/p4. Retrieved 31
July 2014.

[52] PrestoPRIME Preservation Platform (P4). http://prestoprime.eurixgroup.
com/p4. Retrieved 31 July 2014.

[53] P4 Documentation. https://www.prestocentre.org/library/tools/pA4.
Retrieved 31 July 2014.

[54] iIRODS Documentation. https://www.irods.org/index.php/
Documentation. Retrieved 31 July 2014.

[55] DELOS Project. http://www.dpc.delos.info. Retrieved 31 July 2014.

[56] CASPAR Project. http://www.casparpreserves.eu. Retrieved 31 July 2014.
[57] PLANETS Project. http://www.planets—project.eu. Retrieved 31 July 2014.
[58] Shaman Project. http://shaman-ip.eu. Retrieved 31 July 2014.

[59] SCAPE Project. http://www.scape—project.eu. Retrieved 31 July 2014.

[60] TIMBUS Project. http://timbusproject.net. Retrieved 31 July 2014.

[61] National Archives of Australia. Digital Preservation Software Platform (DPSP).
http://dpsp.sourceforge.net. Retrieved 31 July 2014.

[62] Austrian Mediathek. DVA-Profession. http://www.dva-profession.
mediathek.at. Retrieved 31 July 2014.

[63] Digital Preservation Coalition (DPC). http://www.dpconline.org. Retrieved 31
July 2014.

[64] PrestoCentre. Keeping Audiovisual Content Alive. https://www.prestocentre.
org. Retrieved 31 July 2014.

[65] Open Planets Foundation. http://www.openplanetsfoundation.org. Re-
trieved 31 July 2014.

[66] APARSEN. Alliance Permanent Access to the Records of Science in Eu-
rope Network. http://www.alliancepermanentaccess.org/index.php/
category/community/projects/aparsen. Retrieved 31 July 2014.

[67] OAI-PMH. Open Archives Initiative Protocol for Metadata Harvesting). http://
www .openarchives.org/pmh. Retrieved 31 July 2014.

Page 71 (of 72) www.forgetit-project.eu

https://wiki.duraspace.org/display/FEDORA37/Fedora+Digital+Object+Model
https://wiki.duraspace.org/display/FEDORA37/Fedora+Digital+Object+Model
http://www.prestoprime.eu
https://github.com/prestoprime/p4
http://prestoprime.eurixgroup.com/p4
http://prestoprime.eurixgroup.com/p4
https://www.prestocentre.org/library/tools/p4
https://www.irods.org/index.php/Documentation
https://www.irods.org/index.php/Documentation
http://www.dpc.delos.info
http://www.casparpreserves.eu
http://www.planets-project.eu
http://shaman-ip.eu
http://www.scape-project.eu
http://timbusproject.net
http://dpsp.sourceforge.net
http://www.dva-profession.mediathek.at
http://www.dva-profession.mediathek.at
http://www.dpconline.org
https://www.prestocentre.org
https://www.prestocentre.org
http://www.openplanetsfoundation.org
http://www.alliancepermanentaccess.org/index.php/category/community/projects/aparsen
http://www.alliancepermanentaccess.org/index.php/category/community/projects/aparsen
http://www.openarchives.org/pmh
http://www.openarchives.org/pmh

ForgetlT Deliverable D8.1

[68] SWORD. http://swordapp.org. Retrieved 31 July 2014.

[69] OpenSearch. http://www.opensearch.org. Retrieved 31 July 2014.

[70] Mule ESB. http://www.mulesoft.org. Retrieved 31 July 2014.

[71] JBoss ESB. http://www. jboss.org/jbossesb. Retrieved 31 July 2014.

[72] Apache ServiceMix. http://servicemix.apache.org. Retrieved 31 July 2014.
[73] Taverna. http://www.taverna.org.uk. Retrieved 31 July 2014.

[74] Apache UIMA. http://uima.apache.org. Retrieved 31 July 2014.

[75] Cloud Foundry. http://www.cloudfoundry.com. Retrieved 31 July 2014.

[76] ForgetlT Project. Deliverable D8.4: Preserve-or-Forget Framework — Second Re-
lease, April 2015.

Page 72 (of 72) www.forgetit-project.eu

http://swordapp.org
http://www.opensearch.org
http://www.mulesoft.org
http://www.jboss.org/jbossesb
http://servicemix.apache.org
http://www.taverna.org.uk
http://uima.apache.org
http://www.cloudfoundry.com

	List of Authors
	Contents
	Executive Summary
	Introduction
	ForgetIT Architecture
	Active Systems
	pof Middleware
	Preservation System
	oais model in ForgetIT architecture
	Digital Repository
	Cloud Storage Service

	Architecture Components
	Active Systems: Semantic Desktop and TYPO3 cms
	Shared Components of the pof Middleware
	Middleware components supporting core ForgetIT functionality
	Preservation System: Digital Repository and Cloud Storage

	Architecture Diagrams and Integrated Workflows
	Structure Diagrams
	Integrated Workflows
	Workflow 1: Basic Synergetic Preservation
	Workflow 2: Basic Managed Forgetting Support

	Integration Plan
	Plan for the first pof Framework release
	Preliminary plan for other pof Framework releases
	Testing components and integration

	Test Environment
	Candidate Components for the pof Framework
	Digital Repository solutions
	pof Middleware Solutions

	Summary and Future Work
	Acronyms
	References

