
www.forgetit-project.eu

ForgetIT
Concise Preservation by Combining Managed Forgetting

and Contextualized Remembering

Grant Agreement No. 600826

Deliverable D5.2

Work-package WP5: Joint Information and Preservation Management
Deliverable D5.2: Workflow model and prototype for transition be-

tween active system and AIS - first release
Deliverable Leader Jörgen Nilsson
Quality Assessor Mark A. Greenwood
Estimation of PM spent 9
Dissemination level PU
Delivery date in Annex I M12
Actual delivery date 2014-03-17
Revisions 7
Status Final
Keywords: preservation workflows, ingest, access, recontextualiza-

tion, CMIS, integration

ForgetIT Deliverable 5.2

Disclaimer

This document contains material, which is under copyright of individual or several ForgetIT
consortium parties, and no copying or distributing, in any form or by any means, is allowed
without the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consor-
tium warrant that the information contained in this document is suitable for use, nor that
the use of the information is free from risk, and accepts no liability for loss or damage
suffered by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for
any use that may be made of the information contained herein.

c© 2014 Participants in the ForgetIT Project

Page 2 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

List of Authors

Partner Acronym Authors
LTU Ingemar Andersson
LTU Parvaneh Afrasiabi Rad
LTU Göran Lindqvist
LTU Jörgen Nilsson
LTU Tero Päivarinta
IBM Simona Rabinovici-Cohen
DFKI Heiko Maus
dkd Olivier Dobberkau

EURIX Walter Allasia
EURIX Francesco Gallo

Page 3 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Page 4 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Contents

List of Authors 3

Contents 5

Executive Summary 7

Glossary 8

1 Introduction 9

1.1 Structure of report . 9

2 High-level Workflows and Integration 11

2.1 Workflows . 11

2.1.1 Information Creation . 11

2.1.2 (Pre)Ingest . 11

2.1.3 Access . 12

2.1.4 Preservation Planning . 13

2.2 Integration Considerations . 14

3 Workflow Descriptions 16

3.1 Assumptions . 16

3.2 Pre-Ingest and Ingest . 16

3.2.1 Communication . 18

3.3 Access and Recontextualization . 18

3.3.1 Communication . 20

3.4 Preserve-or-Forget Internal Processing . 20

3.4.1 Communication . 20

4 Prototype Implementation Specification 21

4.1 Archiver . 21

Page 5 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

4.1.1 Description . 21

4.1.2 Details . 22

4.2 Context-Aware Preservation Manager . 23

4.2.1 Description . 23

4.3 Middleware solution: the Message Oriented Middleware (MOM) 24

4.3.1 Chosen Approach . 28

5 Conclusions and Future Work 30

References 31

A Package forgetitsip 32

B Package eu.forgetit.ltu.mavencmisclient 47

Page 6 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Executive summary

This report is the first in a series of three which will document the Integration approach as
well as the Archiver component and the Context-Aware Preservation Manager produced
by WP5 for the ForgetIT project. The components described here are initial prototypes,
and concern the Context-Aware Preservation Manager which is still under discussion and
which will continue to be developed over the following two deliverables. This work builds
on concepts and ideas developed and documented in D5.1.

Page 7 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Glossary

List of important terms and acronyms presented in the document:

AIP Archival Information Package
AIS Archival Information System
CMIS Content Management Interoperability Services
DIP Dissemination Information Package
GUID Globally Unique Identifier
METS Metadata Encoding and Transmission Standard
MODS Metadata Object Description Schema
PAIMAS Producer to Archive Interface Methodology Abstract Standard
PoF Preserve or Forget (Middleware)
PREMIS Preservation Metadata: Implementation Strategies
SIP Submission Information Package
XML eXtensible Markup Language

Page 8 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

1 Introduction

One of the purposes with the ForgetIT project is to provide a foundation for synergetic
preservation, where information management and preservation management has more
vivid interaction, making preservation a more integral part of content management in both
organisational and individual contexts.

As identified in ForgetIT deliverable 5.1, there exists a gap between Enterprise Content
Management Systems and Preservation Systems, especially if, for example, we consider
automated processes for ingest. To point out some more explicit points, we can look
at what Korb & Strodl [1] identified as gaps between Enterprise Content Management
Systems (ECM) and OAIS:

• ECM provides no preservation planning functionalities, leaving them to be taken
care of by the Preservation Planning and Administration functions of OAIS.

• In ECM records management, migration has been mostly in the form of migration of
data from one storage medium to another, not so much about migrating file formats
when they have become obsolete due to changes in an ECM.

• ECM systems collects information produced by an organisation. The OAIS however,
needs to be provided with the information that is to be preserved.

• ECM systems are mostly integrated to the organisational infrastructure while Preser-
vation systems often are external services provided by external organisations. This
could lead to a lack of alignment.

• The ECM gathers metadata (sometimes automatically) about content ownership,
access rights, and other organisational issues related to context and the active part
of an object’s lifecycle. The preservation system is more specialised in preservation.

• The preservation system (OAIS) need to store descriptive metadata separately from
the actual content object. In ECM these are usually tightly coupled.

If we also add to this the low penetration of digital preservation practices in industry and
that organizations are often not wiling to allocate a lot of resources on the preservation
activities [2], and the aim for ease of use and seamless transition of information between
Information Management systems and Preservation systems, then we have ourselves
a challenge. Let us first start by looking at some high-level workflows for information
management and digital preservation.

1.1 Structure of report

After the Introduction, a section describing circumstances related to High-level Workflows
and Integration Considerations follows. The report then continues with describing current
workflow descriptions for ingest and recontextualization. Section 4 describes in some

Page 9 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

detail the implementation done so far on components and middleware related to Work-
package 5, followed by Conclusions and Future Work. Appendix A and B contains class
descriptions of the components from section 4.

Page 10 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

2 High-level Workflows and Integration

This section describe high-level workflows related to Information Creation, Pre-Ingest and
Ingest, Access, and Preservation Planning. The focus lies on the purpose of establishing
seamless transition of information objects between Information Management systems and
Preservation systems, which also entails integration of the systems. Therefore the latter
parts of this section looks at general integration approaches and describe the choice
made in the project.

2.1 Workflows

It is worth remembering that the particular workflow for a specific case will be highly
individual, especially regarding the information creation, and therefore these descriptions
are on a generic level. The generic level should be useful to spot common choke points
and problems that may arise in order to address these in as seamless and transparent a
way as possible.

2.1.1 Information Creation

Since the project targets individuals and organisations that generally do not have archiving
expertise, it is not possible to put up harsh requirements on what has to be done regarding
metadata creation during the actual information creation (i.e. the creation of the digital
object which later will be preserved). In some contexts, such as in the case of TYPO3,
the system automatically attaches metadata such as time of creation, author, title, and
similar to the object, which means that some metadata exists. What has to be done is to
make sure that we can get the metadata out of the producing system into the preservation
system. This is mainly a task for the Pre-Ingest and Ingest workflows, but also involves
Preservation Planning. Additional metadata, not provided by the producer, will be added
through processing in the ForgetIT middleware, e.g. by the Contextualizer component.

2.1.2 (Pre)Ingest

On a high level, the Producer to Archive Interface Methodology Abstract Standard (PAIMAS)
[3] describe what needs to be covered during establishment of a “contract” between a
Producer and an Open Archival Information System (OAIS) [4]. This involves 86 steps
divided into four phases for covering the transfer of a digital object from the producer to
the preservation system. The four phases are:

• Preliminary phase (46 steps)

• Formal Definition Phase (36 steps)

Page 11 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

• Transfer Phase (2 steps)

• Validation Phase (2 steps)

These phases are depicted in figure 1 where also a brief description of the phases can
be seen.

Figure 1: PAIMAS Main Phase Objectives and Outputs (adapted from [3])

Already the sheer number of steps, let alone the work required in some of the steps,
makes it problematic for people not accustomed to records management and archiving
processes. Since this project specifically intends to assist organisations and individuals
that are unfamiliar with the formal processes involved, just giving them the PAIMAS model
to implement is not feasible as highlighted by Keitel [5]. The PAIMAS model together with
the OAIS model is, however, a good foundation for identifying steps that can be automated
and information that needs to be collected, preferably in an automated way.

2.1.3 Access

What in OAIS terminology is called “Access” in the ForgetIT project also includes the act
of recontextualization where the purpose is to get the information into a different sys-

Page 12 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

tem than the original one, retaining important context and other properties (e.g. access
rights). A typical OAIS access scenario, illustrated by the Access Functional Entity (fig-
ure 2) would include: searching/querying for interesting information objects where the
OAIS would return descriptive information for relevant objects; selecting and ordering the
actual objects that the customer wants; getting the objects delivered in one or many Dis-
semination Information Packages (DIP).

Figure 2: OAIS Access Functional Entity [4, p. 4-16]

In this project, the Preserve-or-Forget Middleware will be the mediator between Con-
sumer and the OAIS, and also provide some extra search facilities (especially regarding
contextual searches) (figure 3).

2.1.4 Preservation Planning

In the OAIS model, Preservation Planning is one of the functional entities modelled. The
main purpose of Preservation Planning is to make sure that information objects preserved
in the system actually remain usable and understandable. In order to do this, it is sug-
gested that it should work with monitoring of the Designated Community, which is OAIS
terminology for “target group”, in order to better serve the users according to their needs
and knowledge base, which both may change over time. This also means that descriptive
information and context information need to be updated, in order to accommodate the
change in the Designated Community [4].

Page 13 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Figure 3: Abstract elements of retrieval and access workflows (from D5.1)

Preservation Planning also involves monitoring changes in technology and planning for
how to tackle those changes. If, for example, a file format gradually becomes less and
less supported by newer software and systems in general, it is necessary to plan for
how to deal with it (especially if the AIS has large amount of objects in that particular
format). In order to bring the Preservation Planning function of the OAIS closer to the
producers and consumers in the ForgetIT context, we therefore suggest supporting it by
implementing a Context-Aware Preservation Manager function in the PoF middleware.
This “manager” will coordinate preservation oriented information exchange between the
Producers, Consumers and the AIS. This component has not yet been implemented, but
will be developed during year 2 and year 3 of the ForgetIT project.

2.2 Integration Considerations

In the following we briefly discuss the approach chosen for integration of the active sys-
tems with the AIS. The information exchanged between the active systems and the AIS
are of different character, since we e.g. have searches, ingest requests, actual transfer

Page 14 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

of objects, and triggers of events such as obsolescence of a certain file format in the
AIS. Besides this we also have internal processing in the PoF middleware that might take
considerable time, such as image analysis and contextualization. As yet another compli-
cation, the chain of events differ depending on type of request, and type of information
objects concerned in the exchange. Many of these concerns and considerations have
been thought of during year 1, but the answers to what is preferable or more suitable will
come when the 1st iteration of the prototype system is up. Some examples of what has
been under discussion is:

• What is the granularity of the preservation?
Choosing whether to preserve single files or collections of files is essentially up to
the Producer to decide upon. However, handling many single file AIPs in the Preser-
vation System might be a problem in the long run and the Preservation System might
decide to combine objects of similar type/origin/context into larger AIPs.

• Who triggers the preservation?
In general, the Producer triggers preservation, but the decision should be supported
by calculations of Preservation Value done by the Forgettor component. Based on
this, decision could also be made by the producer side system to trigger preservation
automatically - but for Y1 the preservation is triggered manually. Some examples
of “trigger points” in the active system could be; when an object is published, when
a certain already published object reaches high popularity, when a user decides
actively that an object should be preserved, when an object is about to be deleted
or removed from active system.

• Context information in the active system?
Objects might, and probably should, have some context information already in the
active system (Producer system). How to best utilize relevant parts of this and
embed it in suitable metadata schemas is something that we intend to investigate
further.

• What is the interaction between versioning and preservation?
This is something that has been discussed, but not “resolved”. A preservation sys-
tem should not be considered as a “backup” system, or a “version control system” -
but it should however support versions of the same object. One of the reasons for
that is that the preservation system itself might decide to migrate objects to other
file formats, but also because the producers might provide a corrected version of
something that already has been preserved and that needs to be kept for reference
(e.g. in some legal context).

All in all, some of these questions are in focus in the project, such as “context information”
while others are interesting to discuss albeit something that does not have to be resolved
in the scope of the project. The latter type will be discussed and implemented in a more
pragmatic fashion in order to have a working prototype system, while the first type of
questions will be more extensively scrutinised to have a good foundation for deciding
upon what to do and how to do it.

Page 15 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

3 Workflow Descriptions

This section describes in more detail the workflows involved in implementing the seam-
less transition of information objects from active system to preservation system and back
again. At this stage it mainly concern Ingest and Access, while the Preservation Planning
functionalities will be dealt with later in the project.

3.1 Assumptions

The work described here is based on a number of assumptions that are decided upon
in the project as a way of limiting the scope of what needs to be implemented while still
serving as a base for the research to be conducted in the project. One such assumption
is that the active systems make their resources available via CMIS1. This is mainly a prag-
matic choice in the project based on that one of the systems is a Content Management
System, the intended adopters of CMIS. In a fully implemented system for production use,
other branch standards would be considered for adoption. Another assumption relevant
to describe here is that most components in the project, including those mentioned be-
low, are implemented in a middleware with loose couplings between the components. A
third assumption is that the Preservation System in this case is a DSpace installation, and
that few changes should have to be made to the Preservation System side other than for
communication and storage (storage solution is dealt with in WP7).

3.2 Pre-Ingest and Ingest

During the Pre-Ingest and Ingest phase (Figure 4), information is first targeted for preser-
vation in some way by the active system, either automatically or deliberately by some user
of the active system. The latter alternative is not the main focus of the project, but cer-
tainly a scenario that might occur depending on context. After the information has been
selected for preservation, the active system notifies the Preserve-or-Forget Framework
with a Preservation Request. This request is forwarded by the message broker in the
middleware to the Archiver component. The Archiver then extracts the CMIS-GUID (a
global unique identifier) from the request and notifies the ID-Manager via the message
broker in order to establish an identity to use for the information package.

The Archiver now fetches the CMIS Content from the CMIS Repository pointed out by the
request, and puts this in a shared file area for processing using the GUID as identifier (i.e.
name) of the catalogue. When the transmission is done, and verified, the Archiver notifies
the message broker that new information objects now are available for internal processing
in the middleware. In the figure, the Contextualizer is pointed out, but other components

1Content Management Interoperability Services. https://www.oasis-open.org/committees/
cmis/

Page 16 (of 50) www.forgetit-project.eu

https://www.oasis-open.org/committees/cmis/
https://www.oasis-open.org/committees/cmis/

ForgetIT Deliverable 5.2

Figure 4: Ingest Workflow

will also process the information objects. When they do, the metadata they extract and
produce go into the share metadata repository either as files or as entries in a database,
sometimes even a combination of both.

When all relevant middleware components have finished working on the objects, the
Archiver component is notified by the bus and commences packaging of the objects and
metadata into a Submission Information Package (SIP) (figure 5). At the moment the
SIP is created according to a DSpace-METS schema, since the project is using DSpace
as preservation repository. Some of the metadata extracted earlier go into the METS
schema, or subsection thereof (e.g. the MODS section) while some more specialised
metadata from the PoF processing is packaged as metadata files in a subfolder labelled
“metadata”. The actual content objects reside in a folder labelled “content” and there is
also a folder labelled “system” which can be used for holding objects related to execution
or presentation of the content objects. The SIP is then served to the Archival Informa-
tion System (AIS)/Preservation System and when the AIS successfully have received the
package, an identifier for the Archival Information Package is sent back to the Archiver
component, which then notifies the ID-Manager of this. When the package has been
ingested into the AIS, both the package and the source files (i.e. content objects and

Page 17 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

metadata) can be removed from the file area in the middleware.

Figure 5: Submission Information Package

3.2.1 Communication

In the project we work with the CMIS protocol for exchanging information objects with
the active systems. The process relies on having GUID available for the objects, and will
either receive such from the active system, or in lack of such generate identifiers in the
middleware.

The preservation system on the other hand, does not handle CMIS and therefore the
objects are packaged according to the METS standard in preparation for ingest to the
preservation system. After successful ingest into the AIS, we store the AIP ID in the
middleware ID manager for future reference.

3.3 Access and Recontextualization

While “access” is a word used in OAIS, and generally a graspable concept, the ForgetIT
project also strive for “recontextualization” of preserved information. This entails access-
ing information objects that originated in one system and putting them into a sensible, but
perhaps different, context than the originating context. This would e.g. include changes
in the actual information system environment (different software) but also changes in the
use of the object, or changes in the underlying information model. All in all the purpose is
to facilitate use of the information object, in a way that fits the purpose of the future user.

Even though recontextualization is the goal, we do need to get basic access working to
begin with. The workflow in figure 6 describes the first iteration of this functionality.

Page 18 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

The active system sends an access request for a specific object. This request is mediated
through the PoF bus to the Archiver component. There are at least two ways for the active
system to know what to look for. It could either be that they have the GUID in their own
records, or they could use PoF search functionality. This is however not depicted in the
workflow since it deals with the fetching and delivery of an information object. When
the request is received, the Archiver component contacts the ID-manager (if necessary)
to get the AIP ID needed for the request to the AIS. The AIS is then contacted with a
request/order for a package containing the requested object. This package is delivered
as a Dissemination Information Package (DIP) from the AIS. This DIP is de-constructed
and PoF internal processing commences, including e.g. Contextualizer processing. When
internal processing is finished, the Archiver commence with packaging the object(s) and
relevant metadata into a structure described using CMIS. The receiving system is notified
on the existence of the prepared delivery, and fetches it from the PoF. As in the Ingest
workflow, the local working copies are removed after a successful delivery of the objects
to the receiving system.

Figure 6: Recontextualization workflow for access

Page 19 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

3.3.1 Communication

Communication will chiefly be with PoF Adapters to the active systems, and with the
Preservation system. However all components in the PoF middleware that prepares the
data objects in some way, are also candidates for communication. Most, or all, of this
would be handled by the PoF Bus.

3.4 Preserve-or-Forget Internal Processing

Essentially, the workflow for internal processing is a combination of the first half of the
recontextualization workflow, and the second half of the Ingest workflow. This workflow
has not been prioritised during the first year of the project but will be developed further
together with the rest of the workflows in upcoming deliverables.

3.4.1 Communication

Apart from the communication with the AIS, all components in the PoF middleware that
prepares the data objects in some way, or needs information packages from the preser-
vation system, are candidates for communication. Most, or all, of this would be handled
by the PoF Bus.

Page 20 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

4 Prototype Implementation Specification

In this section we describe details and considerations related to the initial implementation
of the Collector/Archiver component, and also some brief concepts for the Context-Aware
Preservation Manager which will be developed later in the project. The Collector/Archiver
component is implemented to such an extent that it is able to fetch objects from the ac-
tive systems using CMIS, store them internally in the middleware for further processing
by other components, and then prepare a Submission Information Package ready to be
delivered to, or fetched by, the Archival Information System. For Year1 the focus has been
on getting the process up and running, and the component is not extensively tested with
large workloads, but is able to handle the type of objects and packages that we are using
at this stage.

4.1 Archiver

4.1.1 Description

Triggered by a request from the active system(s), this component collects data objects
that should be preserved and prepares and submits them to the preservation system by
packaging the data objects together with relevant metadata (into a SIP). The component
receives a preservation request in the form of either a REST-AtomPub reference or a
JSON request (in CMIS called “Browser Binding”). Acting on that request, the Collector
fetches the object and metadata (CMIS) from the reference provided. The Collector noti-
fies the ID-manager with the CMIS-Id (GUID) of the object, and notifies the PoF Bus that
an object has been collected. Before a Submission Information Package (SIP) can be
created, other PoF components need to process the object and extract relevant metadata
and other characteristics needed for the forgetting process. This metadata is stored in the
Metadata Repository, and on a trigger from the bus, the Archiver fetches metadata and
prepares the package and submits it to the Preservation System. There are at least two
options here: 1. The Archiver sends a reference to where the Preservation System can
fetch the package; 2. The Archiver sends the package to the ingest folder of the Preserva-
tion System. In response to the submission, the Archiver needs an archive ID that should
be sent to the ID-manager. The Collector/Archiver is also responsible for restructuring
DIPs into packages that the active system can handle to get the information back into
active use. As a response to a trigger, that can come from the active system, or from PoF
internal components (e.g. the scheduler), a request is made to the Preservation System
for a DIP. The DIP is then disassembled and restructured if needed for adoption in the
active system. This may include restructuring of metadata in order to facilitate ingest into
the active system. Transformation of content objects is not considered to be a part of this
functional entity.

Page 21 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

4.1.2 Details

The Collector/Archiver is active in both ingest and access workflows and provides a com-
mon interface to the active systems (i.e. information systems at the Producer side of the
OAIS model). It exchanges objects with the active systems in the form of CMIS objects.

The software is implemented on a Java platform using MySQL as relational database.
Code documentation excerpts can be found in appendix A and appendix B. The system
is tested on Ubuntu (Linux) platform. Software API packages used:

• Java

• MySQL 5.0

• METS API 1.0

• DROID 4

• Md5deep

• Apache Commons Compress API

The database is used for storing the data needed for construction of the METS metadata
file. The METS is created using a modified version of the METS API 1.0 to accommodate
MODS as well as XML headers. The DROID software is used to extract the MIME type
from information objects and will later on be used for more extensive analysis. Checksums
are generated using the Md5deep component. At the moment we support MD5, SHA1
and SHA256. The Apache Commons Compress API is used to compress/package the
objects to either a zip-file or a tar-package.

A sequence diagram describing the internal processing of the Archiver component ex-
tracting metadata relevant for creation of a SIP can be seen in Figure 7. Figure 8 shows
the internal processing sequence for preparation of a SIP.

For the CMIS communication we utilize a combination of Java code and Groovy scripts in
order to fetch objects from the active systems. For exposing objects to the active systems,
there are currently two approaches that are evaluated. One possible approach is to use
the OpenCMIS FileShare Repository2. It does come with a “not intended for production
use” warning, but it would serve the purpose of demonstration for Y1. The project opted
for the other alternaltive, which is to use a more production scale solution, in this case
Alfresco3 so that we already have it in place for the coming years.

2http://chemistry.apache.org/opencmis-fileshare-repository.html
3http://www.alfresco.com/cmis

Page 22 (of 50) www.forgetit-project.eu

http://chemistry.apache.org/opencmis-fileshare-repository.html
http://www.alfresco.com/cmis

ForgetIT Deliverable 5.2

Figure 7: Sequence Diagram for Extracting Archiver Metadata

4.2 Context-Aware Preservation Manager

4.2.1 Description

The purpose with the Context-Aware Preservation Manager is to partly serve as an help-
ing hand for the function of the Preservation Planning entity, and to some extent the Ad-
ministration entity, in the AIS (Archive Information System / Preservation System). Those
functions need to be stretched out to meet the active systems (and their owners) and this
is where the Context-Aware Preservation Manager comes in. There exists a need to han-
dle changes on both sides of the middleware, which includes enabling communication of
events and triggers relevant for both the preservation systems and the (owners of the) ac-
tive systems. As an example, the preservation systems have internal preservation plans
which might include transformation of objects at ingest, if the objects are in unsuitable
formats. These “default transformations” need to be communicated to the active systems.
This may be communicated already at (or before) ingest, since these plans are known
beforehand. As another example, the AIS is responsible for preservation of the objects
for long term, but the ForgetIT system must be able to re-contextualize the objects into

Page 23 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Figure 8: Sequence Diagram for Creating a SIP

active systems. This means that when the AIS makes a decision to transform a class of
objects - this must be communicated to the active system and its owners. If this trans-
formation would ruin the chances of re-contextualization, some actions need to be taken
to ensure the possibility of re-contextualization (e.g. transformation to another format for
re-contextualization).

4.3 Middleware solution: the Message Oriented Middleware (MOM)

The interdependency between middleware components, and the processing time that
might be required in some instances, means that we have to queue events so that they
are handled in the correct order, especially since some processing may not start before
certain other processes have finished. There exists several options on how to achieve this,
but this section focuses on the approach chosen for the project. The detailed descriptions
will be available in deliverables from WP8, but introductory description to the chosen
approach is discussed in the next section and will be refined in future releases of the
document.

The field of middleware solutions and Service Oriented Architecture (SOA) includes sev-
eral solutions and approaches which cannot be discussed here. We will just mention here
that the integration of distributed applications to build complex workflows requires service
orchestration and choreography, in order to implement business logic. Commercial and
open source solutions are available for both platforms and workflow managers. Such so-
lutions still play a key role in the IT market and all major vendors provide solutions for
building enterprise systems. Among the commercial solutions it is worth mentioning Mi-
crosoft BizTalk, XMLBus by Iona, WebSphere by IBM or Oracle SOA Suite. The open

Page 24 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

source market includes several mature solutions such as OpenFlow, Taverna (which re-
cently gained popularity in the digital preservation field), Mule, Apache Service Mix and
several others. Many open source systems offer for free a high level of stability and sev-
eral features, which can fulfil the requirements of almost all users. In the following a few
details will be provided about Apache solutions, because they are considered a good
choice for ForgetIT objectives.

The solutions mentioned above are all built on top of a middleware based on messaging,
which became a popular approach in the last decade, when the concepts of Enterprise
Service Bus and Message Oriented Middleware were formalized. A good introduction and
still a reference manual for all interested developers is the book from David A. Chappel
about ESB and MOM [6]. Many concepts and figures reported in the following have been
borrowed from that guide.

The top open source solutions, Mule and Apache ServiceMix, are built on top of a MOM.
In the following we describe briefly the main concepts related to MOM since this approach
will be adopted in ForgetIT for implementing the PoF middleware.

A Message Oriented Middleware (MOM) is a key part of an ESB architecture and is a
concept that involves data transfer between applications using a communication channel
carrying messages, i.e. self-contained units of information. In a MOM-based communi-
cation environment, messages are usually sent and received asynchronously.

One of the main advantages of using a MOM is that message-based communications
enable decoupling of distributed applications, since senders and receivers of messages
are never aware of each other. The messages are sent to and received from a messaging
system, which is in charge for delivering each message to the appropriate destination.

Using message-based communications, applications are abstractly decoupled; senders
and receivers are never aware of each other. Instead, they send and receive messages to
and from the messaging system. It is the responsibility of the messaging system (MOM)
to get the messages to their intended destinations. In a messaging system, an appli-
cation uses an API to communicate through a messaging client that is provided by the
MOM vendor. The messaging client sends and receives messages through a messaging
system, as shown in Figure 9.

The messaging system is responsible for managing the connection points between multi-
ple messaging clients, and for managing multiple channels of communication between the
connection points. The messaging system is usually implemented as a software process,
which is commonly known as a message server or a message broker. Message servers
are usually capable of being grouped together to form clusters that provide advanced
capabilities such as load balancing, fault tolerance, and sophisticated routing using man-
aged security domains.

Messaging enables a loosely coupled environment in which an application does not need
to know the intimate details of how to reach and interface with other applications. In choos-
ing a type of communication infrastructure, it is important to consider the trade-offs be-
tween loosely coupled and tightly coupled interfaces, and asynchronous and synchronous

Page 25 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Figure 9: Communication in a MOM. Picture taken from [6]

interaction modes. This feature distinguishes messaging from RPC-style programming,
as discussed above, which is typically synchronous. When performing a synchronous op-
eration across multiple processes, the success of one RPC call depends on the success
of all the downstream RPC calls that are part of the same synchronous request/response
cycle. This makes the whole invocation an all-or-nothing proposition and additional control
software and logic must be provided to handle failures. One of the driving ideas behind
the concept of bus is the combination of loosely coupled interfaces and asynchronous
interactions, in analogy with hardware bus architecture. As explained in [6], ”Everything
on the bus is accessible by anything else on the bus. If you are the owner of a service or
an application domain, you need only be concerned with three operations: plugging into
the bus, posting data to the bus, and receiving data from the bus. The bus then gets the
data to the applications in the target data formats”. Having this in mind, it can be eas-
ily understood how the MOM approach, based on standard APIs for communication and
transport, can be considered a valuable solution for implementing a bus in an enterprise
environment.

Two different messaging models can be used, depending on the requirements of the
application: one makes use of topics and the other of queues. In the case of topics, the
Producer and the Consumer are referred to as Publisher and Subscriber, respectively.
This model can be used for a one-to-many broadcast of information: multiple consumers
may register an interest with, or subscribe to a topic. A producer sends a message on that
channel by publishing on that topic. Each subscriber receives a copy of that message.
In the case of queues, the Producer and the Consumer are referred to as Sender and
Receiver, respectively. This model can be used for a one-to-one communication between
two specific applications. Only one consumer may receive a message that is sent to
a queue. Figure 10 below depicts the two models. The choice of which model to use
can largely depend on how many consumers need to see duplicate copies of the same
message.

Page 26 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Figure 10: MOM messaging model with topics (Publish and Subscribe) and queues (Point
to Point). Picture taken from [6]

A point-to-point queue may have multiple consumers typically listening for the purposes
of load-balancing: only one receiver may consume each individual message. There may
also be no receivers listening, in which case the message stays in the queue until a re-
ceiver is registered on the message server for that queue. In the publish-and-subscribe
model, if no subscribers are registered for a given topic, messages could be discarded.
This behaviour can be further changed by changing configuration for reliability and per-
sistence.

A message is typically composed of three basic parts: the headers, the properties, and
the message payload or body (Figure 11). The headers are used by both the messaging
system and the application developer to provide information about things such as the
destination, the reply-to destination, the message type, and the message expiration time.

XML is the favourite technology for representing data as it flows between applications
across the ESB. The data that is produced and consumed by a vast array of applications
can exist in a variety of formats and packaging schemes. While it is certainly possible for
the ESB to carry data using any form of packaging or enveloping scheme, representing in-
flight data as XML provides several benefits, including the ability to use specialized ESB
services that combine data from different sources to create new views of data, and to en-
rich and re-target messages for advanced data sharing between applications. Therefore,
one of the benefits of using XML as the native data format for the ESB is that messages
are not treated as opaque chunks of data. If all data between applications and services is
formatted as XML documents, underpinnings are provided by the ESB that allow you to
layer advanced capabilities on top of the ESB to gain real-time insight into the business
data that flows through the enterprise.

Several standards are available for message transmission. The most popular one or
at least the one which is supported by all major MOM implementations is JMS. Even if
JMS has its roots in Java, clients compliant to JMS written in different languages are

Page 27 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Figure 11: Structure of messages in a MOM (the header is used for correct routing between
applications and the body transports the actual data to be processed). Picture
taken from [6]

available, too. JMS supports a set of messaging patterns and helper interfaces to syn-
chronously and asynchronously support the request/reply pattern using both the publica-
tion/subscription and point-to-point messaging models and is the reference technology for
standards-based integration, as already discussed above.

An enterprise MOM can be used at the core of the ESB communication layer. The MOM
can be considered as a multi-protocol messaging bus that supports asynchronous deliv-
ery of messages.

4.3.1 Chosen Approach

The Preserve-or-Forget architecture, which has already been described in D8.1 [7], in-
cludes four layers corresponding to user applications, the PoF middleware, the archive
and the cloud storage. The workflow model described in this document is mainly relevant
for the PoF middleware implementation, as already mentioned above. The architecture
diagrams reported in D8.1 include also the concept of middleware bus as a way to enable
communication and transport among all integrated components.

In D8.1 two simple integrated workflows have been described, one focusing on a basic
synergetic preservation, and the other workflow is for managed forgetting. For the two
workflows we provide simple activity diagrams discussing the architecture components
involved.

The proposed approach was to implement a simple Message Oriented Middleware in
order to reduce the complexity of the integration using a lightweight standard approach.
The concept of middleware bus is implemented by the message broker. Using a MOM

Page 28 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

with a JMS broker to exchange data between applications in the form of XML messages
should be enough for the first release of the PoF framework, where the focus will be on
the development of each component and on their early integration to demonstrate the
aforementioned workflows in D8.1. However, since MOM solutions are the backbone for
almost any enterprise-class middleware, this approach does not prevent the adoption of
more complex solutions for implementing the middleware. The bottom line of D8.1 was
to choose a standard open source implementation of a message broker which should
support additional features for simple orchestration of the processes.

Currently several solutions are available on the market or from the open source commu-
nity to implement a MOM. They choice can be made according to different criteria. For
the scope of ForgetIT, an open source solution, which is also mature and supported by an
active community, seems to be the best candidate. The implementation should be based
on standard technologies and protocols, to avoid vendor lock-in for the future exploitation
of the project results. An other criterion is the availability of detailed documentation and
support.

Some possible candidates have already been mentioned in D8.1. Among them, the
different components of the Apache ServiceMix [8] suite, specifically ActiveMQ [9] and
Camel [10], look quite promising. The former is probably the most widely adopted imple-
mentation of a message broker based on Java specification (JMS). ActiveMQ is included
in several other solutions such as Mule. The ServiceMix suite includes also the Camel
component, which can be used for process orchestration and integrates seamlessly with
ActiveMQ.

ActiveMQ provides several functionalities which have been discussed above for message
servers, including support for topics and queues, reliability and persistence, indepen-
dence from the specific language.

Apache Camel is a lightweight integration framework which implements all EIPs, enabling
easy integration of different applications using the required patterns. Camel supports
different languages and technologies, including Java, Spring XML, Scala or Groovy, HTTP,
FTP, JMS, EJB, JPA, RMI, JMX, LDAP and others. Besides, own custom components can
be created. Camel can be deployed as standalone application, in a web container (e.g.
Tomcat or Jetty), in a JEE application Server (e.g. JBoss AS or WebSphere AS), in
an OSGi environment or in combination with a Spring container. The approach used in
Camel for application integration is independent of the particular domain specific language
or technology.

Both ActiveMQ and Camel are mature and production ready and their combination offers
also scalability, transaction support, concurrency and monitoring.

The approach discussed above will be detailed in D8.3 [D8.3], expected at M18, which will
describe the first release of the PoF Framework and will include details about the actual
implementation of the middleware.

Page 29 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

5 Conclusions and Future Work

This deliverable builds on work from D5.1 with more focus on implementation specifics.
The prototype component (Archiver) was discussed and implemented. The most interest-
ing part still remains, when we will integrate the component, together with components
from other workpackages, into the ForgetIT framework. This will also give us indications
on what needs to be further developed in the Archiver, as well as input to the development
of the Context-Aware Preservation Manager. Consideration will be put on that although
the Archiver is a component that mainly works “in the dark”, the Context-Aware Preserva-
tion Manager most likely will have more user interaction, and thereby also require more
user evaluation.

In the second year of the project, the Archiver component will be further enhanced with
support for file format identification on version level, while also spending time on rectifying
problems that might show up during integration in the ForgetIT framework. Work will also
commence on the Context-Aware Preservation Manager.

Page 30 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

References

[1] Joachim Korb and Stephan Strodl. Digital preservation for enterprise content: A
gap-analysis between ecm and oais. In Proceedings of the 7th International Confer-
ence on Preservation of Digital Objects, pages 221–229. Österreichische Computer
Gesellschaft, 2010. Vortrag: IPRES 2010, Wien; 2010-09-19 – 2010-09-24.

[2] Seamus Ross. Digital preservation, archival science and methodological foundations
for digital libraries. New Review of Information Networking, 17(1):43–68, 2012.

[3] Producer-archive interface methodology abstract standard. Recommendation for
standard, Consultative Committee for Space Data Systems, Office of Space Com-
munication (Code M-3), NASA, Washington, DC 20546, USA, May 2004.

[4] Reference model for an open archival information system. magenta book. issue
2. june 2012. Technical report, Consultative Committee for Space Data Systems,
CCSDS Secretariat, Space Communications and Navigation Office, 7L70 Space
Operations Mission Directorate, NASA Headquarters Washington, DC 20546-0001,
USA, 2012. CCSDS 650.0-M-2.

[5] Christian Keitel. Ways to deal with complexity. In Proceedings of The Fifth Interna-
tional Conference on Preservation of Digital Objects Joined Up and Working: Tools
and Methods for Digital Preservation, pages 287–291, 2008.

[6] David A. Chappell. Enterprise Service Bus. O’Reilly, 2004.

[7] ForgetIT. D8.1 - Integration Plan and Architectural Approach. http:
//www.forgetit-project.eu/fileadmin/fm-dam/deliverables/
ForgetIT_WP8_D8.1.pdf, November 2013. Retrieved: 31 January 2014.

[8] Apache ServiceMix. http://servicemix.apache.org. Retrieved: 31 January
2014.

[9] Apache ActiveMQ. http://activemq.apache.org. Retrieved: 31 January
2014.

[10] Apache Camel. http://camel.apache.org. Retrieved: 31 January 2014.

Page 31 (of 50) www.forgetit-project.eu

http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP8_D8.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP8_D8.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP8_D8.1.pdf
http://servicemix.apache.org
http://activemq.apache.org
http://camel.apache.org

ForgetIT Deliverable 5.2

A Package forgetitsip

Package Contents Page

Classes
AnalyzeFiles . 32

Common . 33

CreateTarFile . 35

DataBase . 36

Droid . 38

FileValues . 39

ForgetItSip . 40

HashSum .41

MetsCreator . 43

ReadWriteXml . 44

StartDroid . 46

Class AnalyzeFiles

Declaration

public class AnalyzeFiles
extends java.lang.Object

Fields

• protected static java.lang.String L pathKatalog

• protected static java.lang.String L droidLista

Page 32 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Constructors

• AnalyzeFiles
public AnalyzeFiles()

Methods

• createFileList
public static boolean createFileList()

– Returns – boolean true/false

– See also
∗ Method that creates a file list containing the path to the files.

• createFileListForDroid
public boolean createFileListForDroid()

– Returns – boolean true/false

– See also
∗ Creates a file list of the files that are unpacked in a directory, file list used

by DROID4.

• setDroidList
public void setDroidList(java.lang.String droidLista)

– Parameters
∗ droidLista, – output for droid list incl. filename.

• setPathCatalog
public void setPathCatalog(java.lang.String pathkatalog)

– Parameters
∗ pathkatalog, – Pointing to the directory containing the folder content,

metadata and systems.

Class Common

See also

– A class that contains common methods

Page 33 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Declaration

public class Common
extends java.lang.Object

Constructors

• Common
public Common()

Methods

• dateAndTime
public java.lang.String dateAndTime()

– Returns – date and time stamp.

– See also
∗ Creates a date and time stamp.

• delAllFilesCatalog
public boolean delAllFilesCatalog(java.lang.String path)

– Returns – boolean true/false

– See also
∗ A general method to delete files in a directory.

• deleteFile
public boolean deleteFile(java.lang.String pathtofile)

– Parameters
∗ pathtofile, – path including the file name.

– Returns – boolean true/false

– See also
∗ Deletes the given file

• generateUID
public java.lang.String generateUID()

– Returns – unique UUID

– See also
∗ Creates a unique UUID.

Page 34 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Class CreateTarFile

See also

– A class that creates tar or zip file.

Declaration

public class CreateTarFile
extends java.lang.Object

Constructors

• CreateTarFile
public CreateTarFile()

Methods

• setInputFileCatalog
public void setInputFileCatalog(java.lang.String inputFileCatalog)

• setPathTarBall
public void setPathTarBall(java.lang.String pathTarBall,
java.lang.String tarFileName)

– Parameters
∗ pathTarBall, – path to the directory where the tar, zip file to be created.
∗ tarFileName, – filename of the tar or zip file.

• tarFiles
public void tarFiles(java.lang.String compression)

– Parameters
∗ compression, – compression method (tar—zip).

– See also
∗ compresses the file to tar or zip.

Page 35 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Class DataBase

See also

– A class that writes and retrieves information from the MySQL DB.

Declaration

public class DataBase
extends java.lang.Object

Fields

• protected java.sql.ResultSet rSet

Constructors

• DataBase
public DataBase()

Methods

• getDataForMets
public java.sql.ResultSet getDataForMets(java.lang.Integer
selectSQL) throws java.lang.Exception

– Parameters
∗ selectSQL, – selector for SQL string (1-5).

– Returns – ResultSet

– See also
∗ A method that retrieves data from MySQL database.

• getNrOfFiles
public java.lang.Integer getNrOfFiles()

– Returns – Return the number of records in the table..

– See also
∗ One method counts the number of records in the table (the Mets).

• readUidToTxt
public java.lang.String readUidToTxt()

Page 36 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

– Returns – Return unique identifiers from the database.

• setCloseDbForRs
public void setCloseDbForRs() throws java.lang.Exception

– See also
∗ A method closes the database, is used for RS

• setDbForRs
public boolean setDbForRs()

– Returns – boolean true/false

– See also
∗ A method of creating a database connection, used for RS.

• setPathConfig
public void setPathConfig(java.lang.String pathConfig)

• truncTable
public boolean truncTable(java.lang.String tblName)

– Returns – boolean true/false

– See also
∗ A method that truncates table in mySQL DB.

• writeToDroidInfoDB
public boolean writeToDroidInfoDB(java.lang.String paketUID,
java.lang.String filePath, java.lang.String Status,
java.lang.String Name, java.lang.String Version,
java.lang.String PUID, java.lang.String mimeValue,
java.lang.String idWarning)

– Returns – boolean true/false

– See also
∗ A method writes the data from DROID to sip db DB (mySQL).

• writeToMetsDB
public boolean writeToMetsDB(java.lang.String paketUid,
java.lang.String filUid, java.lang.String filNamn,
java.lang.String filDatum, java.lang.String Mime,
java.lang.String Version, java.lang.String Byte,
java.lang.String hashSum, java.lang.String hashsumType,
java.lang.String filePath)

– Returns – boolean true/false

– See also
∗ A method writes the data to (tbl: mets) to the sip db DB (mySQL).

Page 37 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

• writeToPaketinfoDB
public boolean writeToPaketinfoDB(java.lang.String paketBesk,
java.lang.String paketDatum, java.lang.String levOrg,
java.lang.String kontaktNamn, java.lang.String kontaktTele,
java.lang.String kontaktMail, java.lang.String sipMjukvara,
java.lang.String arkivSkaparNamn, java.lang.String arkivSkaparOrgnr,
java.lang.String levSysNamn, java.lang.String bevOrgNamn,
java.lang.String bevOrgID, java.lang.String levTyp,
java.lang.String levSpec, java.lang.String levDatum,
java.lang.String levOverKommelse, java.lang.String dokumentId,
java.lang.String paketUID)

– Returns – boolean true/false
– See also

∗ A method writes the data to (tbl: mets) to the sip db DB (mySQL).

Class Droid

See also

– A class that takes information out of the Droid output and sends it to the table in the
DB.

Declaration

public class Droid
extends java.lang.Object

Constructors

• Droid
public Droid()

Methods

• droidOutputXmlToDB
public void droidOutputXmlToDB()

– See also
∗ Reads the information from xml file and make calls to the method that

writes the information to the DB.

Page 38 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

• setDroidOutputXml
public void setDroidOutputXml(java.lang.String droidOutputXml)

– Parameters
∗ droidOutputXml – path to output file from Droid (even filename).

– See also
∗ Sets the path on the Droid output file.

• setPathConfig
public void setPathConfig(java.lang.String pathConfig)

– Parameters
∗ pathConfig, – path to config file.

– See also
∗ Sets the path to the config file.

Class FileValues

See also

– A class that produces values and properties of files.

Declaration

public class FileValues
extends java.lang.Object

Constructors

• FileValues
public FileValues()

Methods

• createMeFiles
public boolean createMeFiles(java.lang.String pathtocatalog)

– Parameters
∗ pathtocatalog, – path to catalog where files are.

– Returns – boolean, true/false

Page 39 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

– See also
∗ Method that sets the values for the files to be written in ADDML structure

• fileData
public boolean fileData(java.lang.String path)

– Parameters
∗ path, – path to file.

– Returns – boolean, true/false

– See also
∗ Method that sets the values for the input file, name, mime, mb,AD

• getFilename
public java.lang.String getFilename()

– Returns – filename

• getFileversion
public java.lang.String getFileversion()

– Returns – file version

– See also
∗ Used only for Web.

• getMB
public java.lang.String getMB()

– Returns – return files size in mb.

• getMimevalue
public java.lang.String getMimevalue()

– Returns – mime value.

Class ForgetItSip

Declaration

public class ForgetItSip
extends java.lang.Object

Fields

• protected static java.lang.String hashsumType

• protected java.lang.String filepath

Page 40 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

• protected static java.lang.String pathConfig

• protected static java.lang.String dbFullpath

• protected static java.lang.String dbXlinkPath

• protected static java.lang.String dbChecksum

• protected static java.lang.String dbMime

• protected static java.lang.String dbSize

• protected static java.lang.String dbUse

• protected static java.lang.String dbDate

• protected static java.lang.String dbFileID

• protected static java.lang.String dbPaketuid

Constructors

• ForgetItSip
public ForgetItSip()

Methods

• main
public static void main(java.lang.String[] args)

– See also
∗ main,method that runs the other classes.

Class HashSum

See also

– A class that creates the hash sums for files in a directory and
– generates a text file with the path and the hash sum.

Declaration

public class HashSum
extends java.lang.Object

Page 41 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Constructors

• HashSum
public HashSum(java.lang.String katalog,
java.lang.String sokvag filnamn)

– Parameters
∗ katalog – , path to file folder.
∗ sokvag filnamn – , path and name of output txt file for hashsum.

– See also
∗ constructor for the class.

Methods

• createHashsum
public boolean createHashsum()

– Returns – boolean true/false

– See also
∗ A method that creates a MD5 or SHA1 list of files given cataloged.

• createHashsumforfile
public boolean createHashsumforfile(java.lang.String fullsokvag)

– Parameters
∗ fullsokvag, – absolute path to the file.

– See also
∗ A method that creates the hash sum for one file.

• generateFileUID
public java.lang.String generateFileUID()

– Returns – file UUID

– See also
∗ Creates a unique identifier UUID for a file.

• generateUID
public java.lang.String generateUID()

– Returns – UUID

– See also
∗ Creates a unique identifier UUID.

• setAlgoritm
public java.lang.String setAlgoritm(java.lang.String valAlgoritm)

Page 42 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

– Parameters
∗ valAlgoritm – set md5 or sha1.

– See also
∗ Provides an opportunity to choose between MD5 — SHA1.

• setCatalog
public void setCatalog(java.lang.String sKatalog)

– Parameters
∗ sKatalog, – path to folder.

– See also
∗ path to file folder.

• setOutFile
public void setOutFile(java.lang.String sUtfil)

– Parameters
∗ sUtfil, – path and name of output txt file for hashsum.

– See also
∗ set the output txt file for hash sum.

Class MetsCreator

See also

– A class that creates a mets file for the tar—zip package.

Declaration

public class MetsCreator
extends java.lang.Object

Constructors

• MetsCreator
public MetsCreator()

Page 43 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Methods

• createMets
public void createMets() throws METSException,
java.io.FileNotFoundException, org.xml.sax.SAXException,
javax.xml.parsers.ParserConfigurationException,
java.io.IOException, java.lang.Exception

– See also
∗ A method that creates a mets file.

• setPathConfig
public void setPathConfig(java.lang.String pathConfig)

– Parameters
∗ pathToMetsfile, – absolute path to the config file.

– See also
∗ Path to the config file (including file name).

• setPathToMetsfile
public void setPathToMetsfile(java.lang.String pathToMetsfile)

– Parameters
∗ pathToMetsfile, – Absolute path to the file.

– See also
∗ Sets the path to the Mets file (including filename).

Class ReadWriteXml

See also

– Reads from config file and writes to the config file.

Declaration

public class ReadWriteXml
extends java.lang.Object

Constructors

• ReadWriteXml
public ReadWriteXml()

Page 44 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Methods

• readConfigfile
public java.lang.String readConfigfile(
java.lang.String pathconfigfile,
java.lang.String tag)

– Parameters
∗ pathconfigfile, – path to config file.
∗ Strng, – tag name where the value is to be retrieved.

– Returns – value from the given tag.

– See also
∗ Lser ut data ur xml configurationsfil

• writeConfigfile
public void writeConfigfile(java.lang.String pathconfigfile,
java.lang.String tag, java.lang.String value)

– Parameters
∗ pathconfigfile – , path to config file.
∗ tag – , tag name into which the value should be written.
∗ value – , value to be written down.

– See also
∗ Method that writing data to XML configurations file.

• writeToXmlTagOrAttribByIdx
public boolean writeToXmlTagOrAttribByIdx(
java.lang.String pathofxmlfile, java.lang.String tag,
java.lang.String attr, java.lang.String value, int nodeIdx)

– Parameters
∗ pathofxmlfile – , path to config file.
∗ tag, – tag name.
∗ attr, – attribute.
∗ value, – the value to be written to the attribute.
∗ nodeIdx, – which node in the ordering to be written to.

– Returns – boolean, true/false.

– See also
∗ Writes data to XML configurations file, tags with attributes

Page 45 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

Class StartDroid

See also

– A class that starts Droid, fixes issues with Boot (bug problem).

Declaration

public class StartDroid
extends java.lang.Object

Constructors

• StartDroid
public StartDroid()

Methods

• main
public static void main(java.lang.String pathDroid,
java.lang.String argA, java.lang.String argS,
java.lang.String argO)

– See also
∗ A main method that starts Droid.

Page 46 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

B Package eu.forgetit.ltu.mavencmisclient

Package Contents Page

Classes
CMISapp . 47

CopyDirFile . 48

ReadWriteXml . 49

StartPacking . 50

Class CMISapp

Declaration

public class CMISapp
extends java.lang.Object

Fields

• protected static java.lang.String pathConfig

• protected static java.lang.String workPath

• protected static java.lang.String cmisIdFolder

Constructors

• CMISapp
public CMISapp()

Methods

• main
public static void main(java.lang.String[] args)
throws java.io.IOException, java.lang.InterruptedException

Page 47 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

– See also
∗ main method for the class

Class CopyDirFile

See also

– copy one file or a entire folder with files

Declaration

public class CopyDirFile
extends java.nio.file.SimpleFileVisitor

Constructors

• CopyDirFile
public CopyDirFile(java.nio.file.Path fromPath,
java.nio.file.Path toPath,
java.nio.file.CopyOption copyOption)

Methods

• copyFile
public void copyFile(java.io.File sFile, java.io.File dFile)
throws java.io.IOException

– Parameters
∗ sFile – srcPath, filepath and filename
∗ dFile – destPath, filepath and filename

– Returns –

– See also
∗ copy one file from folder1 to folder2

• preVisitDirectory
public java.nio.file.FileVisitResult preVisitDirectory(
java.nio.file.Path dir,
java.nio.file.attribute.BasicFileAttributes attrs)
throws java.io.IOException

Page 48 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

• visitFile
public java.nio.file.FileVisitResult visitFile(
java.nio.file.Path file,
java.nio.file.attribute.BasicFileAttributes attrs)
throws java.io.IOException

Members inherited from class SimpleFileVisitor

java.nio.file.SimpleFileVisitor

postVisitDirectory, preVisitDirectory, visitFile, visitFileFailed

Class ReadWriteXml

Declaration

public class ReadWriteXml
extends java.lang.Object

Constructors

• ReadWriteXml
public ReadWriteXml()

Methods

• readConfigfile
public java.lang.String readConfigfile(
java.lang.String pathconfigfile, java.lang.String tag)

– Parameters
∗ pathconfigfile, – path to config file.
∗ tag, – tag name where data is available.

– Returns – the value of a given tag.

– See also
∗ Reading data out of the XML configurations file

• writeConfigfile
public void writeConfigfile(java.lang.String pathconfigfile,
java.lang.String tag, java.lang.String value)

Page 49 (of 50) www.forgetit-project.eu

ForgetIT Deliverable 5.2

– Parameters
∗ pathconfigfile, – path to config file.
∗ tag, – tag name where value be written.
∗ value, – the value to be written down to config file.

– See also
∗ Method that writes the data to xml configurations file.

Class StartPacking

See also

– calls the packing module.

Declaration

public class StartPacking
extends java.lang.Object

Constructors

• StartPacking
public StartPacking()

Methods

• startPacking
public void startPacking(java.lang.String cmisUid)

Page 50 (of 50) www.forgetit-project.eu

	List of Authors
	Contents
	Executive Summary
	Glossary
	Introduction
	Structure of report

	High-level Workflows and Integration
	Workflows
	Information Creation
	(Pre)Ingest
	Access
	Preservation Planning

	Integration Considerations

	Workflow Descriptions
	Assumptions
	Pre-Ingest and Ingest
	Communication

	Access and Recontextualization
	Communication

	Preserve-or-Forget Internal Processing
	Communication

	Prototype Implementation Specification
	Archiver
	Description
	Details

	Context-Aware Preservation Manager
	Description

	Middleware solution: the Message Oriented Middleware (MOM)
	Chosen Approach

	Conclusions and Future Work
	References
	Package forgetitsip
	Package eu.forgetit.ltu.mavencmisclient

