
www.forgetit-project.eu

ForgetIT
Concise Preservation by Combining Managed Forgetting

and Contextualized Remembering

Grant Agreement No. 600826

Deliverable D4.2

Work-package WP4: Information Consolidation and Concentration
Deliverable D4.2: Information analysis, consolidation and concentra-

tion techniques, and evaluation - First release
Deliverable Leader Vasileios Mezaris, Vassilios Solachidis, Olga Pa-

padopoulou
Quality Assessor Walter Allasia
Estimation of PM spent 20
Dissemination level PU
Delivery date in Annex I 31-01-2014 (M12)
Actual delivery date 4-02-2014 (M12)
Revisions 0
Status Final
Keywords: text summarization, term cloud, text condensation, word

redundancy removal, semantic enrichment, feature ex-
traction, concept detection, image quality, face detection,
image clustering, image summarization

ForgetIT Deliverable D4.2

Disclaimer

This document contains material, which is under copyright of individual or several ForgetIT
consortium parties, and no copying or distributing, in any form or by any means, is allowed
without the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license
from the proprietor of that information.

Neither the ForgetIT consortium as a whole, nor individual parties of the ForgetIT consor-
tium warrant that the information contained in this document is suitable for use, nor that
the use of the information is free from risk, and accepts no liability for loss or damage
suffered by any person using this information.

This document reflects only the authors’ view. The European Community is not liable for
any use that may be made of the information contained herein.

© 2013 Participants in the ForgetIT Project

Page 2 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

List of Authors

Olga Papadopoulou / CERTH
Vasileios Mezaris / CERTH
Vassilios Solachidis / CERTH
Anastasia Ioannidou / CERTH
Bahaa Beih Eldesouky / DFKI
Heiko Maus / DFKI
Mark A. Greenwood / USFD

Page 3 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Contents

List of Authors 3

Contents 4

Executive Summary 7

Glossary 8

1 Introduction 9

2 Text Summarization 11

2.1 Problem statement . 11

2.2 ForgetIT approach . 11

2.3 Software implementation . 12

2.4 Conclusions and future work . 13

3 Text Condensation 14

3.1 Problem statement . 14

3.2 ForgetIT approach . 14

3.3 Software implementation . 14

3.4 Conclusions and future work . 15

4 Semantic Text Composition 16

4.1 Problem statement . 16

4.2 ForgetIT approach . 16

4.3 Experimental evaluation . 18

4.4 Software implementation . 18

4.4.1 Editor component . 18

4.4.2 NLP component . 18

4.4.3 LOD component . 19

Page 4 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

4.4.4 PIMO component . 20

4.5 Conclusions and future work . 20

5 Feature extraction and concept detection in image collections 22

5.1 Problem statement . 22

5.2 ForgetIT approach . 22

5.2.1 Feature extraction . 23

5.2.2 Concept detection . 25

5.3 Experimental evaluation and comparison 26

5.4 Software implementation . 27

5.5 Conclusions and future work . 29

6 Image quality assessment 30

6.1 Problem statement . 30

6.2 ForgetIT approach . 30

6.3 Experimental evaluation and comparison 33

6.4 Software implementation . 33

6.5 Conclusions and future work . 35

7 Face detection for clustering 36

7.1 Problem statement . 36

7.2 ForgetIT approach . 36

7.3 Experimental evaluation and comparison 37

7.4 Software implementation . 39

7.5 Conclusions and future work . 41

8 Image clustering for summarization 42

8.1 Problem statement . 42

8.2 ForgetIT approach . 42

8.3 Experimental evaluation and comparison 43

Page 5 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

8.4 Software implementation . 44

8.5 Conclusions and future work . 46

9 Conclusions and future work 47

References 48

Page 6 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Executive summary

Preservation and forgetting processes can be assisted by textual and multimedia content
analysis and condensation methods. Such methods are necessary for supporting a grad-
ual forgetting approach, where content is preserved at varying levels of detail with the
passage of time and the consequent changes in its importance.

In this document we present the first release of the ForgetIT techniques for textual and
multimedia information analysis, consolidation and condensation. Additionally, prelimi-
nary results of the evaluation of the developed techniques are reported. The theories
adopted as the foundation of the presented methods have been studied and analysed in
deliverable D4.1 [1].

Specifically, the problems addressed and the methods that are presented in this deliver-
able, in response to these problems and in accordance with the WP4 objectives, are:

• “Text summarization”, for creating a summary of a single document or of a collection
of documents.

• “Text condensation”, for performing linguistic processing for document length re-
duction by removing or replacing potentially redundant words without changing the
meaning of it.

• “Semantic text composition”, which facilitates providing context for the text being
composed.

• “Feature extraction and concept detection in image collections”, which extracts a
vector representation for each image and then utilizes machine learning techniques
for quantifying the relation between the image and a set of semantic concepts.

• “Image quality assessment”, which attempts to quantify the visual quality of images.

• “Face detection for clustering”, which aims to detect faces in image collections.

• “Image clustering for summarization”, which groups similar images and condensates
the initial image collection.

First software implementations for all these methods have been developed and are pre-
sented as part of this deliverable.

Page 7 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Glossary

List of important terms and acronyms presented in the document:

AP Affinity Propagation
BIQI Blind Image Quality Index
BoMs Bag-of-Models
BoW Bag-of-Word
BRISQUE Blind/Referenceless Image Spatial Quality Evaluator
DCT Discrete Cosine Transform
DoC Degree of Confidence
farthest first Farthest First Traversal Algorithm
GATE General Architecture for Text Engineering
GGD Gaussian Distribution
GPU Graphic Processing Unit
hier-comp Hierarchical clustering using complete linkage
hier-single Hierarchical clustering using single linkage
IQA Image Quality Assessment
LOD Linked Open Data
LSVM Linear Support Vector Machine
MOS Mean Opinion Score
NER Named Entity Recognition
NLP Natural Language Processing
NMI Normalized Mutual Information
NSS Natural Scene Statistics
PAM Partitioning Around Medoids
PIMO Personal Information Model
PR Processing Resource
REST REpresentational State Transfer
RMS Route Mean Square
seed Semantic Editor
SaaS Software as a Service
SIFT Scale-Invariant Feature Transform
SIN Semantic Indexing
SURF Speeded Up Robust Features
SVM Support Vector Machine
xinfAP Extended Inferred Average Precision
XML eXtensible Markup Language

Page 8 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

1 Introduction

Either for personal or organizational use [2], the amount of media items produced every
day is huge. In the case of organizational use, taking into account the information lo-
cated in the web sites and in the documents and media produced in institutions and large
medium enterprises we realize that the amount of text and media that is created, continu-
ously grows at increasing pace. Similarly, in the personal case scenario, digital cameras,
mobile phone cameras, web cams, etc. are frequently used, giving the opportunity to the
people to capture events important for them, like weddings, birthday parties, a trip, etc.,
as well as everyday situations like a coffee break with friends, a walk to the beach, etc.
All these captured items need storage space to be kept. Nevertheless, not all of them are
important and should be preserved along time (e.g. some documents become outdated
at some point, or images may exist that are just duplicates or of low quality). Thus, in
order to organize, retrieve, process and finally preserve these media items efficiently and
effectively, textual and visual analysis techniques are essential. For example text summa-
rization and condensation or image collection quality and concept detection can give the
opportunity to manipulate the collection in a human understandable way and distinguish
important from unimportant items.

This deliverable presents the first release of the ForgetIT text and visual information anal-
ysis techniques for condensation and summarization. Based on the state-of-the-art and
requirement analysis that was reported in deliverable D4.1 [1], a first set of ForgetIT anal-
ysis techniques were developed and implemented as ForgetIT components, and prelimi-
nary performance evaluation of them was also carried out.

The following sections are structured beginning with a problem statement (which includes
a short review of the current state of the art). Afterwards we introduce the approach that
we developed in ForgetIT and present the results of preliminary experiments conducted
for evaluation. We then present the specifications, access and usage information for the
software implementations of the developed techniques, and finally we give an outlook on
the next steps of our work. All the methods that are described will eventually be part
of the middleware component (D8.1 [3]) of the Preserve-or-Forget platform that is being
developed in the project.

We start in Section 2 with Text Summarization, in which two components are presented,
content and term detection. Content detection detects useful text sections and is used as
a first step to summarization. Term detection can extract representative weighted terms
from documents, which can be used in order to provide a corpus summary.

Section 3 presents Text Condensation, which is applied in the cases that summarization
is either unnecessary, illegal (for regulatory reasons), or simply unwanted. Text Conden-
sation performs linguistic processing for the purpose of document length reduction by
removing or replacing potentially redundant words without changing the meaning of it or
removing any details.

Textual information processing is concluded in Section 4, where a Semantic Text Compo-

Page 9 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

sition tool is presented. This tool facilitates providing context for the text being composed,
by exploiting natural language processing tools and knowledge from Linked Open Data
(LOD). This procedure improves the process of text composition and brings semantics
into the text at composition time.

We proceed in Section 5 to present our visual information analysis techniques, starting
with feature extraction and concept detection from images. An overall component is cre-
ated consisting of two processes. The first one, feature extraction, extracts a vector rep-
resentation for each image of a collection. The second one, concept detection, uses the
extracted vector representations to assess and quantify the relations between an image
and a set of semantic concepts.

We continue in Section 6 with a technique for image quality assessment. Several visual
quality measures (blur, contrast, darkness and noise) are examined and their output is
merged, so as to produce a global quantitative assessment of the images’ visual quality.

Since the presence of humans is one of the most important semantic elements of an
image in many cases, face detection and subsequent clustering are important aspects of
visual information processing and summarization. In Section 7, a face detection method
is proposed which aims to decrease as much as possible the rate of false face detections.

In Section 8 clustering approaches are used in order to identify groups of similar images
and use them for condensating the initial collection. Our evaluation experiments focused
on six clustering algorithms and three different types of data features, based on which
a combination of algorithm and features is chosen for implementing the initial ForgetIT
approach to image clustering for summarization.

The deliverable concludes in Section 9 with a general summary of what was presented
in the preceding sections and brief general concluding remarks on the future plans of
ForgetIT in the area of multimedia analysis and consolidation. As aforementioned, the
software components described will be integrated within the Preserve-or-Forget platform
according to a Software as a Service (SaaS) approach, with distributed services con-
nected with REST interfaces.

Page 10 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

2 Text Summarization

2.1 Problem statement

Traditional textual summarization is used to provide a summary of a single document or of
a collection of documents. This section describes a number of possible solutions which,
while primarily developed within other projects, were adopted for use by ForgetIT and
are being further developed in accordance with the ForgetIT needs. Future versions of
these components will be further adapted to the more detailed requirements posed by the
ForgetIT use cases (described in WP9 and WP10 [2]).

2.2 ForgetIT approach

GATE [4], a General Architecture for Text Engineering, has been continuously developed
over a period of almost 20 years at the University of Sheffield and provides a large number
of components (known as processing resources) which can be combined in many different
ways to perform text analysis of one form or another. Some of the resulting applications
can be used for summarization or for pre-processing to enable a more tailored approach
to summarization. All of these components are available for use within the project, but
two specific components are likely to be of immediate use and will be incorporated within
the ForgetIT framework at the earliest opportunity; content and term detection.

Content Detection, available via the BoilerPipe plugin [5, 6], is a useful summarization
tool. This component analyzes a document to determine which sections are useful in
terms of content and which are extraneous in some way. This is most useful when deal-
ing with web pages which often (if not always) contain menus, sidebars, etc. which are
not relevant to the content. Identifying and removing these sections is an important first
step to summarization of any form as the irrelevant material could easily bias a gener-
ated summary. We see this component (or a more complex application containing this
component) being of specific interest to the personal use case (see WP9 [2]) where web
pages stored in the PIMO could be processed to remove the extraneous material before
archiving.

One area in which summarization techniques can provide a clear benefit will be in provid-
ing easy to absorb overviews of archived documents. While a collection of documents
will be archived along with a description of the contents, this will not always convey
the full range of information the package contains in the same way that some form of
multi-document summary might. We are currently approaching this problem by using
TermRaider [7, 8], to extract representative, weighted terms (words, entities etc.) from
documents. These weighted terms can then be used in a number of ways to provide a
corpus summary. We are currently using them to produce term clouds. A term cloud is a
form of weighted list, which allows text to be visualized by equating font size with impor-
tance (for a comprehensive overview see [9]). In their simplest form term clouds can be

Page 11 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Figure 1: Example Term Cloud

generated from the raw tokens present in a document, however, it is usually more useful
to perform some level of filtering to select appropriate terms from a corpus which can then
be visualized and as previously mentioned, in ForgetIT this filtering is carried out using
TermRaider. An example term cloud produced in this way from a random sample of 450
tweets from the BBC, the Guardian, and CNN can be seen in Figure 1.

Whilst this approach to summarization may appear simplistic, in that it does not attempt
to generate a coherent textual summary, such summaries are easy to understand, even
with just a quick glance, and as such should be a useful addition to the use case tools,
especially when a user is browsing the archive.

2.3 Software implementation

All the components discussed within this section are already available as part of the stan-
dard release of GATE. Some, however, have seen recent development which has not yet
been officially released and is only available via a nightly build of GATE [10]. A summary
of the technical details of the software is shown in Table 1.

Table 1: Software technical details

Functional description GATE Based Text Analysis
Input Text Document
Output Text Document or Textual Information
Language/technologies Java, GATE
Hardware Requirements Any HW with Java support and sufficient RAM
OS Requirements Any OS with Java support

Page 12 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

2.4 Conclusions and future work

In this section we have described a couple of components that can be used to either
produce some form of textual summary or that can aid in the production of a summary.
These components were originally developed mostly outside the scope of ForgetIT, but
work currently under way within the project aims to tailor these components for a better
fit with the project goals. This includes tighter integration with the contextualization com-
ponents being developed in WP6; for example using contextualization to merge multiple
terms produced by TermRaider which reference the same entity, and by linking terms
to the contextualization information the summary becomes a way of exploring the wider
archive as well as summarizing a single archive package.

These improved components will be reported in more detail in deliverables D4.3 and D6.3,
but are likely to be integrated within the ForgetIT framework well in advance of the delivery
of these documents.

Page 13 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

3 Text Condensation

3.1 Problem statement

There are many situations in which time and effort have been expended on producing a
document and in these cases summarization is either unnecessary, illegal (for regulatory
reasons), or simply unwanted.In those cases where summarization is possible but un-
wanted, it may still, however, be beneficial to long term preservation if subtle reductions
in length can be performed without altering the meaning in anyway; even the reduction of
a few characters per documents quickly adds up, and while disk space may be cheap it is
not free, especially at larger volumes.

3.2 ForgetIT approach

The approach we have taken to this problem within ForgetIT is to use linguistic process-
ing to determine potentially redundant words and phrases, which can be removed or
replaced, without changing the meaning of the document, but which reduce its length.

The exact details of the language constructs that can be simplified were discussed in
detail in deliverable D4.1 [1], but some examples of the condensation that can be applied
include:

• “Any particular type of dessert is fine with me.” becomes “Any type of dessert is fine
with me.” saving ten characters.

• “During that time period, many buyers preferred cars that were pink in colour and
shiny in appearance.” becomes “During that time period, many buyers preferred
cars that were pink and shiny.” saving twenty-three characters.

• “The function of this department is the collection of accounts.” becomes “The func-
tion of this department is to collect accounts.” saving seven characters.

3.3 Software implementation

This work has been implemented as a GATE [4] processing resource (PR) and uses Word-
Net [11] as its main linguistic resource. As a GATE PR, this component can be used on
its own or embedded within a larger application (named entity extraction, contextualiza-
tion, etc.) and can be obtained from http://downloads.gate.ac.uk/forgetit/
LinguisticSimplifier.zip.

The GATE API makes it trivial to make an application available as RESTful web service
or to embed the application within other software. A summary of the technical details of
the software is shown in Table 2.

Page 14 (of 51) www.forgetit-project.eu

http://downloads.gate.ac.uk/forgetit/LinguisticSimplifier.zip
http://downloads.gate.ac.uk/forgetit/LinguisticSimplifier.zip

ForgetIT Deliverable D4.2

Table 2: Software technical details

Functional description Linguistically Based Condensation
Input Text Document
Output Text Document
Language/technologies Java, GATE, WordNet
Hardware Requirements Any HW with Java support and sufficient RAM
OS Requirements Any OS with Java support

3.4 Conclusions and future work

Currently the software accompanying this deliverable includes a simple GATE pipeline
to allow the PR to be used within GATE. Integration with the ForgetIT framework (either
supplying a REST service or embedding within a use case tool) is slated to take place
within the next few months as the platform matures.

Page 15 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

4 Semantic Text Composition

4.1 Problem statement

Composing natural language text is a task encountered in countless use-cases in real
life. Examples include journalists writing news articles, researchers authoring scientific
papers, persons writing their diaries, users composing posts on social media websites,
customers writing reviews for products, ... etc.

Modern text editing and composition tools offer a variety of features that aim at improv-
ing productivity and usability - to name a couple of aspects - of the overall experience of
composing natural language text. However, nearly all of those features are based on the
ability to understand the syntax of the text rather than its semantics. Exploiting knowledge
about the content of the text has potential benefit for the task of text composition and the
goals of ForgetIT. By exploiting natural language processing tools, extracting knowledge
existing in the text and combining it with knowledge from Linked Open Data (LOD)[12],
the process of text composition could be substantially improved and semantics could be
brought into the text already at composition time. Those improvements utilize the se-
mantics of the text being composed and bear the potential of enriching user’s knowledge
at the same time. The term semantic text composition refers to the enrichment of text
composition by making use of the semantic information extracted from the text as well
as knowledge about the content of the text from sources such as Linked Open Data, or
personal knowledge models.

4.2 ForgetIT approach

Textual information condensation and preservation will benefit from semantic text com-
position in many ways. Semantic text composition facilitates providing context for the
text being composed. While a user types in the text, contextual information about the
important entities in the text and the relations among them is offered in an interactive
way. This also allows for annotating the text at the time of composition and reduces the
need for manually adding annotations. Furthermore, annotating the text at such an early
stage increases the quality of the information used for annotating it since the author has
the opportunity to revise, edit, or reject suggested annotations. It also reduces or even
eliminates the need for a later stage of annotation.

In ForgetIT deliverable D9.1 [2], we identified several scenarios in personal preservation
where persons are likely to write texts, e.g., taking notes to prepare and during trips,
to write down short stories when organizing family photos, or for notes concerning their
hobby. The types of texts range from short sentences to bullet points up to several para-
graphs. The texts use either already existing entities from the Personal Information Model
(PIMO, see deliverable D9.1 [2]) or introduce new ones. To support users, those enti-
ties can be identified using Linked Open Data sources such as DBPedia[13], proposed to

Page 16 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

them as some kind of explanation of the entities and in a second step, also as annotations
of the text. This shall foster the annotations of things in the PIMO and reduce manual ef-
fort. Likewise, the contextualization process in WP6 will get additional and more precise
textual content (because entities are already linked by the users) to work with.

Therefore, the goal is to provide a text editor component for semantic enrichment of texts
written by users. In our work on semantic text composition, we developed seed - short
for Semantic Editor. It is an HTML based rich-text editor supported with natural language
capabilities and integrated with personal as well as general knowledge sources.

Figure 2: seed Components

In Figure 2, seed components are shown. From an NLP (Natural Language Processing)
perspective, seed builds on multiple NLP tools making it capable of performing high level
tasks such as named entity recognition, relation extraction, and coreference resolution in
addition to a variety of basic NLP tasks. As for the knowledge support in seed, we distin-
guish between two types: personal and general knowledge. Personal knowledge refers
to structured information about concepts from the user’s point of view (i.e., according to
the user’s mental model). In this context, PIMO is the personal knowledge source we
utilize. General knowledge on the other hand refers to structured information available
from public knowledge repositories such as DBPedia, Freebase[14] and others.

Page 17 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

4.3 Experimental evaluation

In PIMO, each entity can have a textual description. A current use-case for seed is its use
as the text editing tool for these PIMO texts. Through the composition of natural language
text description for entities, seed infers and suggests related entities for the user. Thus,
saving the user the time and effort of manually searching for and annotating the entity at
hand with related ones.

An evaluation of seed will be done in combination with the WP9 evaluation in the Fringe
festival, where participants will use the PIMO and thus also seed to annotate their pictures
and write down notes for images. The goal is to reduce manual annotation effort.

4.4 Software implementation

Following are implementation details about the various components of seed :

4.4.1 Editor component

The current implementation of seed is meant - in the first place - to run in the browser.
Therefore, it is written in JavaScript and HTML on the UI-side and in Java on the server-
side. It is also possible to embed seed ’s editor in GUIs built using other languages.
The only prerequisite is the availability of an HTML capable UI element to run the editor
component.

seed ’s front-end is an extended version of the open-source HTML-based rich text editor
CKEditor[15]. It allows for annotating and tracking arbitrary parts of the text. Interaction
with the annotated parts is also possible.

4.4.2 NLP component

This component is implemented as a Java service that builds on the capabilities of two
famous NLP toolkits; Stanford CoreNLP[16] and Apache OpenNLP[17]. It can perform:

• Named entity recognition:
Named Entity Recognition (NER) is one of the most famous subtasks of information
extraction. Its target is to locate and classify atomic elements in text into predefined
categories such as people, organizations, and locations. seed relies on the Stanford
named entity recognizer to perform multi-token named entity recognition. Given
sample input text such as:

John Doe lives in Germany

the NLP component returns the text after recognizing entities in a form similar to the
following:

Page 18 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

<person>John Doe</person> lives in <location>Germany</location>

For entity recognition, we adopt a three-class model that distinguishes between en-
tities of the types person, location, and organization. It is important to mention that
those three classes serve as recommendations for the expected type of the suspect
entity. It is possible through other components (e.g., LOD component) to identify
entities of other types as well.

• Coreference resolution:
Coreference is the case where multiple expressions in text refer to the same thing.
In a sentence like “John made sure he returns early” the words “John” and “he”
probably refer to the same person whose name is John. Coreference resolution
refers to the task of identifying which words refer to which things in a text that has
coreference. For a sample input text such as:

John Doe lives in Germany. He works at Fruits United Ltd.

seed would resolve the coreference and return the following output text:

John Doe lives in Germany. John Doe works at Fruits United Ltd.

• Relation extraction:
In addition, the NLP component of seed builds on ReVerb [18] to extract binary
relations from the text being composed. It is currently limited to extracting binary
relation phrases of the form:

<Argument 1><Relation phrase><Argument 2>

The extracted relations can be further utilized to enrich the user’s knowledge or
search for more information about the entities in the text.

The NLP component can be found at:
https://git.opendfki.de/seed/seednlpapi.

4.4.3 LOD component

The Linked Open Data (LOD) component of seed includes APIs for extracting information
from LOD sources such as DBPedia and Freebase. This component can work inde-
pendently or in combination with the NLP component to improve information extraction.
Following are example tasks where this component is involved:

• Entity disambiguation
Distinguishing between different entities that have similar or identical names.

• Relation extraction
Searching for relations among entities.

• Context inference
Finding contextual information about entities mentioned in the text. This helps in
annotating the entity and in relating it to parts of the personal knowledge of the user.

Page 19 (of 51) www.forgetit-project.eu

https://git.opendfki.de/seed/seednlpapi

ForgetIT Deliverable D4.2

4.4.4 PIMO component

This seed component includes APIs for interacting with the user’s PIMO. The interaction
scenarios include but are not limited to:

• Recognizing entities

• Extracting information about recognized entities

• Extracting relations between entities mentioned in the text

Figure 3 shows the editor component embedded in a Java GUI of the PIMO.
The following URL points to a PIMO exploration tool which employs seed as its text editor:

https://pimo.kl.dfki.de/forgetitsandbox/

A summary of the technical details of the software is shown in Table 3.

Table 3: Software technical details

Functional description A semantic text composition tool
Input Rich text
Output Annotated rich text with and information about its content
Language/technologies HTML, JavaScript, Java
Hardware Requirements N/A
OS Requirements N/A

4.5 Conclusions and future work

The current seed prototype serves as a proof of concept for semantic text composition.
Planned improvements include:

• Reducing the need for user interaction required to review suggested entity annota-
tions.

• Realizing more scenarios where the knowledge extracted from the text is used not
only to enrich the composed text, but also to complement the user’s personal knowl-
edge (i.e., PIMO). These scenarios are addressed in deliverable D9.1 [2]. A sce-
nario with high interest is to organize and annotate photo collections where users
write descriptive texts, notes, or stories which have been told by their parents.

The seed component has already been included in the PIMO infrastructure as a text
editor for texts written in the PIMO (see Figure 3), e.g., as meeting protocol or describing
a thing. Future work will especially investigate the use cases for personal preservation.

Page 20 (of 51) www.forgetit-project.eu

https://pimo.kl.dfki.de/forgetitsandbox/

ForgetIT Deliverable D4.2

Figure 3: Snapshot of seed embedded in PIMO

Page 21 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

5 Feature extraction and concept detection in image col-
lections

5.1 Problem statement

High-level image representations are investigated in recent years in the scope of digi-
tal preservation and summarization. The huge amount of images captured in everyday
life triggers the need of organizing image collections in a way that important images can
be distinguished from less important ones and finally a new sub-collection can be con-
structed containing images that someone would like to preserve during the years.

The purpose of concept detection is to analyse the visual content of an image and auto-
matically infer keywords (or tags) indicating the presence of semantic concepts. Initially,
a vector representation of the images is created using feature extraction techniques. A
wide variety of global and local features can be extracted from an image, but local fea-
tures are preferred in the most recent literature approaches. For local feature extraction,
first, either an interest point detection technique [19] (such as corner or edge detector)
or a sampling approach [20], is applied in order to select points of interest in the image.
Then, for each point of interest a descriptor is calculated. The well-known Scale-Invariant
Feature Transform (SIFT) descriptor, presented in [21], is based on local image structure
and its color variations - RGBSIFT and opponentSIFT, presented in [22], exploiting color
information, are popular choices. To reduce computational cost, fast approximations of
SIFT, such as Speeded Up Robust Features (SURF) [23] and DAISY [24] descriptors have
also been introduced. The final representation of an image can be produced by encod-
ing the local descriptors using the well-known Bag-of-Word (BoW) feature representation
[25], or other recent approaches (e.g., VLAD [26], Fisher Vectors [27]). Finally, semantic
concepts are detected using these image representations as input to machine learning
techniques, such as trained Support Vector Machine (SVM) [28] classifiers, which pro-
duce a confidence score indicating the presence of the corresponding concepts in the
image. We refer the reader to deliverable D4.1 [1] of WP4 for a detailed presentation of
the state-of-the-art.

5.2 ForgetIT approach

A feature extraction and concept detection component has been developed in ForgetIT. As
shown in Figure 4 the component input can be either an image or an image collection that
contains N images. Two main processes are applied to the input images, as described in
more detail in the sequel. The final output is a vector for each image whose elements are
confidence scores (called Degree of Confidence (DoC)), indicating for each concept how
much it relates to each input image.

Page 22 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Figure 4: Feature extraction and concept detection component

5.2.1 Feature extraction

The feature extraction process takes as an input an image and extracts a Bag-of-Words
vector representation. Four individual steps are performed sequentially in order to extract
the output as shown in Figure 5. The most interesting part of this process is the descriptor,
where in ForgetIT we introduce color variations of the SURF descriptor, aiming to exploit
image color information and reduce the necessary processing time, compared to previous
local color descriptors. The rest of the process is built based on well-known state-of-the-
art approaches.

Figure 5: Feature extraction steps

Keypoint Detection: The extraction of low level features is performed on image points
or regions of interest. Two types of detectors are used in our approach: i) the default
keypoint detector that is used by the SURF descriptor, the edge based Hessian detector
[23], where the number of the extracted interest points depends not only on the image
characteristics but also on a threshold value (which the lower it is, the more keypoints are
extracted) and ii) a dense sampling strategy where the number of keypoints is a constant

Page 23 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

number for fixed image size.

Descriptor: In the descriptor part, a feature vector is extracted representing each interest
point. We use an implementation of SURF for GPU from the OpenCV C++ library [29, 30],
which extracts a 128-dimensional feature vector for each keypoint. In addition, in order
to exploit color information we developed two color variations of SURF, the RGBSURF
and the opponentSURF. In RGBSURF case, we first split the three RGB channels of the
color image and then apply the original OpenCV implementation of SURF to each channel
separately, while for the opponentSURF descriptor we first transform the RGB space to an
opponent space and then proceed as above. Thus, three 128-dimensional feature vectors
are extracted and concatenated to one 384-dimensional vector for each keypoint. The
vectors, as extracted from the OpenCV implementation, contain double elements. We
convert the vector elements to integer values by multiplying them with a constant factor
and then round them to the closest integer (which has computational gains).

Pyramidal Decomposition: A 1× 3 spatial pyramid decomposition scheme is used, i.e.,
the entire image is the pyramid cell at the first level (Full part), and three horizontal image
bars of equal size are the pyramid cells at the second level (Middle-Upper-Down part). In
this way, we divide the extracted vectors according to their location and hence we manage
to maintain some spatial information of the image structure.

Assignment: The final step of the feature extraction method comprises two types of
assignment, hard and soft assignment. Firstly, a pre-processing step is required, where
a visual word vocabulary1 is constructed off-line for each part of the images. Therefore, 4
Bag-of-Words (BoWs) with 1000 words each one is constructed. Then, hard assignment
assigns each feature vector to the closest bin2, while soft assignment assigns each vector
to four closest bins.

The final outputs are 4× 1000-dimensional vectors for each image. We concatenate them
resulting in a 4000-dimensional BoW vector representation for each image.

Figure 6: Configurations by combining detector, extractor and BoW strategies

1An image collection of 135.747 images were used for the BoWs construction. 250.000 feature vectors
were extracted randomly and a kmeans clustering algorithm was applied giving 1000 visual words

2One of the 1000 visual words of the codebook

Page 24 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Finally we came up with 12 different combinations of 2 detectors (hessian, dense sam-
pling), 3 descriptors (SURF, RGBSURF, opponentSURF) and 2 BoW strategies (hard-,
soft-assignment), called configurations and presented in Figure 6.

5.2.2 Concept detection

The concept detection process consists of two individual steps (Figure 7) resulting in the
extraction of the final Degree of Confidence (DoC) for each concept and each image of
the collection.

Figure 7: Concept detection steps

Training: Training of the SVM-based classifiers is performed with the use of the TRECVID
2012 Semantic Indexing Task [31] training data.

Scaling: The testing data are scaled using 10 representative ranges, which have been
calculated at the training phase, selected among all ranges that were estimated during
training for the entire set of concepts. This represents a good compromise between SVM
accuracy (which benefits from task-specific scaling of the data) and computational com-
plexity (scaling being one of the most computationally demanding phases of concept de-
tection).

Prediction: The scaled testing data are passed to the LSVMs. The number of employed
SVMs per concept ranges from 5 to 60 depending on the number of configurations that
we use in each experiment (1 to 12 configurations). Each LSVM returns one prediction
score in the range [0,1] expressing the DoC (higher values are better). The output for one
configuration and for each image is a model vector of N elements (where N = 46 is the
number of concepts in our initial experiments).

Late fusion: A late fusion strategy is applied to combine the DoCs of the different config-

Page 25 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

urations for the same concept. This fusion is realized by calculating either the arithmetic
or the harmonic mean of the DoCs.

5.3 Experimental evaluation and comparison

For evaluating the proposed approach, we compared the proposed color SURF variants
with the corresponding SIFT descriptors. The results are presented in Tables 4 and 5.
These results show that the proposed color SURF variants compare favourably to the
corresponding SIFT descriptors, contributing to faster and more accurate concept detec-
tion.

The experimental set up employs the entire video dataset and the concept list that were
used in the 2012 TRECVID SIN task. The video dataset comprises 8263 videos of almost
200 hours of total duration which are pre-segmented into 145634 shots. As in TRECVID,
46 semantic concepts were evaluated out of a total of 346 concepts due to the unavail-
ability of ground truth annotations for all 346 concepts. We evaluated our approach in
terms of concept detection accuracy and execution time.

All experiments have been executed on the same computing environment, namely Win-
dows 7 OS 64-bit machine, Intel Core (TM) i7-3770K CPU@ 3.50GHz processor, 16 GB
RAM, CUDA [32] processing for the GPU acceleration.

Table 4: Execution times (in seconds) between SURF and SIFT implementation

Configuration Execution times
Detector Descriptor (seconds)
hessian SURF 630

harris-laplace SIFT 1271
hessian RGBSURF 1543

harris-laplace RGBSIFT 3009
hessian opponentSURF 1513

harris-laplace opponentSIFT 2913.5
dense sampling SURF 1898
dense sampling SIFT 2112
dense sampling RGBSURF 5083.5
dense sampling RGBSIFT 5701.5
dense sampling opponentSURF 5365
dense sampling opponentSIFT 5915

Page 26 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Table 5: Extended Inferred Average Precision (xinfAP) [33] of individual and fused configu-
rations. Higher values of xinAP are better.

Number of Interest point detector descriptor BoW strategy xinfAP (%)
configurations

1 dense sampling SURF soft 6,97
1 dense sampling SIFT soft 6,08
1 dense sampling RGBSURF soft 7.86
1 dense sampling RGBSIFT soft 7,02
1 dense sampling opponentSURF soft 7,33
1 dense sampling opponentSIFT soft 7,12

fusion of SURF

3 dense sampling RGBSURF soft 12,87
opponentSURF

fusion of SIFT

3 dense sampling RGBSIFT soft 10,81
opponentSIFT

fusion of SURF hard
6 dense sampling RGBSURF soft 13

opponentSURF

fusion of SIFT hard
6 dense sampling RGBSIFT soft 10,57

opponentSIFT

fusion of SURF hard
6 hessian RGBSURF soft 9,1

opponentSURF

fusion of SIFT hard
6 harris-laplace RGBSIFT soft 9,1

opponentSIFT

5.4 Software implementation

We developed a Web Service on a server located in CERTH which executes the feature
extraction and concept detection method. In this service the user can give a URL address
of a compressed file containing an image collection. This compressed file is downloaded
locally to our server where the images are processed. There are no limitations in terms
of image size, image format (we tried to include all well-known image formats, such as,
.jpeg, .png, .bmp, .tif, .gif.) and archive format (the supported formats are .zip, .rar, .tar,
.gzip). Furthermore, our software can deal with cases where the provided compressed
archive contains, besides the images, other document types, such as text files, xml files,
etc. In this case, only the image files are processed and the rest of the files are inevitably
ignored by this component. The output of our Service is an XML file, which is returned
to the user’s browser containing the concepts and the corresponding confidence scores

Page 27 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

of each image. The user can save this XML file and use it for further processing. A
summary of the technical details of the feature extraction and concept detection web
service is shown in Table 6.

Table 6: Summary of the technical details of the implemented service

Functional description Feature extraction and concept detection in image collections
Input An image collection contained into a compressed folder
Output A text and XML file containing the DoC
Language/technologies JAVA Web Service
Hardware Requirements NVIDIA graphic card-CUDA drivers
OS Requirements Windows

The URL query through which the service is called is: http://multimedia.iti.gr:
8080/ForgetITImageConceptDetectionService/ImageConceptDetection?
pathType=’’&pathName=’’&analysisTech=’’&modelFlag=’’&confFlag=’’

where, pathType is the type of the path through which the image collection will be pro-
vided, (currently only the typeUrl type is available), pathName is the path of the image
collection location, analysisTech is a flag indicating the type of the input items (currently
these can be only images; at a later stage, processing video will also be supported), mod-
elFlag is a boolean flag (true,false) indicating which prediction approach will be used,
confFlag is an integer flag (1,2,3) indicating which configuration set will be used.

In Table 7, the values that can be assigned to the modelFlag and confFlag are presented,
as well as a description of the approach that is followed by choosing each of them. In
our first demo version of feature extraction and concept detection method only modelFlag
equal to true and confFlag equal either 1,2 or 3 values are available.

Table 7: modelFlag boolean values (true,false) and confFlag integer values (1,2,3)

modelFlag
true false

BoMs per concept and 10 repre- 1 classifier per concept
sentative ranges for all concepts and 1 range for all concepts

conflag detector descriptor BoW strategy
1 dense sampling RGBSURF soft

SURF

2 dense sampling RGBSURF soft
opponentSURF

dense sampling SURF hard
3 hessian RGBSURF soft

opponentSURF

An example of the URL query is: http://multimedia.iti.gr:8080/

Page 28 (of 51) www.forgetit-project.eu

http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ ImageConceptDetection?pathType=''&pathName='' &analysisTech=''&modelFlag=''&confFlag=''
http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ ImageConceptDetection?pathType=''&pathName='' &analysisTech=''&modelFlag=''&confFlag=''
http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ ImageConceptDetection?pathType=''&pathName='' &analysisTech=''&modelFlag=''&confFlag=''
http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ImageConceptDetection?pathType=typeUrl&pathName=http://vision.okstate.edu/csiq/src_imgs.zip&analysisTech=images&modelFlag=true&confFlag=1
http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ImageConceptDetection?pathType=typeUrl&pathName=http://vision.okstate.edu/csiq/src_imgs.zip&analysisTech=images&modelFlag=true&confFlag=1

ForgetIT Deliverable D4.2

ForgetITImageConceptDetectionService/ImageConceptDetection?
pathType=typeUrl&pathName=http://vision.okstate.edu/csiq/src_
imgs.zip&analysisTech=images&modelFlag=true&confFlag=1

where an image collection, called “src imgs.zip” and located in “http://vision.oks
tate.edu/csiq/”, is passed as an input to our concept detection approach, one configu-
ration (RGBSURF-dense-soft) will be executed and the prediction will be performed using
5 classifiers for each concept. A representative example of an input image and part of the
XML result is given in Figure 8.

Figure 8: Input image and part of the XML output file

5.5 Conclusions and future work

Our work on feature extraction and concept detection currently focuses on image collec-
tions. In our future work we will extend this to video collections as well. Moreover, we
will improve our approach experimenting with different descriptor representations (e.g.,
VLAD, Fisher Vectors).

Page 29 (of 51) www.forgetit-project.eu

http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ImageConceptDetection?pathType=typeUrl&pathName=http://vision.okstate.edu/csiq/src_imgs.zip&analysisTech=images&modelFlag=true&confFlag=1
http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ImageConceptDetection?pathType=typeUrl&pathName=http://vision.okstate.edu/csiq/src_imgs.zip&analysisTech=images&modelFlag=true&confFlag=1
http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ImageConceptDetection?pathType=typeUrl&pathName=http://vision.okstate.edu/csiq/src_imgs.zip&analysisTech=images&modelFlag=true&confFlag=1
http://multimedia.iti.gr:8080/ForgetITImageConceptDetectionService/ImageConceptDetection?pathType=typeUrl&pathName=http://vision.okstate.edu/csiq/src_imgs.zip&analysisTech=images&modelFlag=true&confFlag=1

ForgetIT Deliverable D4.2

6 Image quality assessment

6.1 Problem statement

Image quality is a measure of the perceived degradation of the visual content of an image.
There are several distortions that an image may undergo, either during its capturing or
during subsequent post-processing, such as image blurring, contrast decrease/increase,
noise addition etc. Image quality assessment (IQA) techniques aim to quantify the amount
of image degradation and classify the images according to their visual quality. Detection
and possibly removal of the distorted images from an image collection can control and
enhance the multimedia preservation process. Therefore, the efficient quantification of
visual image quality is an appealing and challenging field of research. Various techniques
which exploit the image transformations (i.e., Discrete Cosine Transform (DCT), wavelet,
etc.), image histogram analysis, Natural Scene Statistics (NSS) and supervised learning
models can be found in the relevant literature. For detailed information on the state-of-
the-art IQA techniques, please refer to the deliverable D4.1 of WP4 [1].

6.2 ForgetIT approach

ForgetIT developed an IQA approach for images, presented in Figure 9. The examined
image quality measures include blur, contrast, darkness and noise and they constitute the
four main processes of the component. As shown in Figure 9, this method takes as an
input an image collection, it processes each image separately for each quality measure
and gives as an output an image quality score.

Figure 9: Image quality assessment component

Blur: Image quality degradation due to the presence of blur is a common problem, often
caused by the slow shutter speed, out-of-focus of the lens, or the relative motion between
the camera, a moving object and the background. In order to detect the blurred images,
we have developed an image blur assessment approach which exploits the information

Page 30 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

derived from the frequency spectrum of the image. The original image is partitioned into
9 equal blocks according to the rule of thirds. Subsequently, the Fourier transform of the
entire image and each of the 9 image patches is computed in order to extract the appro-
priate information about their frequency distribution. We achieve the quantification of high
frequencies distribution by subdividing the frequency amplitude according to the following
ranges: [1, 100], [100, 150], [150, 200], [200, 300] and [300, max] and calculating this fre-
quency histogram for each of the ten images (the initial image and the 9 image patches).
Finally, all the aforementioned histogram bins are concatenated in a vector which serves
as the input to an SVM classifier which provides a confidence value indicating the prob-
ability of an image being blurred. In Figure 10 the overal scheme of the blur detection
method is presented.

Figure 10: Overall scheme of the blur detection method

Contrast: Under certain shooting conditions such as daylight, mist or fog, captured im-
ages may have low contrast. Low contrast images may be characterized as flat or impure
and they are not appealing to the viewers. The most common contrast measures appear-
ing in the relevant literature are the Root Mean Square (RMS) contrast, the Michelson
contrast and the Weber contrast [34]. In our approach, we used the first two measures.
As mentioned in deliverable D4.1 [1], the Michelson contrast measure presents weak-
nesses due to its dependence on the luminance value extrema. To prevent this weakness
we developed an improved approach, which estimates the average max and min lumi-
nance values in the horizontal and vertical direction of the image and computes the final
contrast score as the average of Michelson contrast in these two directions,

CMich,d =
Imax,d − Imin,d

Imax,d + Imin,d

, d = vertical, horizontal.

Besides the RMS and the improved Michelson contrast, we have estimated the distribu-
tion of RGB channel’s values into the range of [0, 50] and [150, max], which determines
the presence of contrast. Additionally, the saturation in HSV color format which represents
the chromatic purity, is estimated:

Sat =
1

XY

X∑
x=1

Y∑
y=1

S(x, y),

Page 31 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

where X, Y are the height and the width of the image respectively. Finally, all the afore-
mentioned features are concatenated in a vector forming the input to an SVM regression
model which provides a confidence value indicating the probability that an image has low
contrast.

Darkness: Browsing an album of images captured for example during a concert, we can
observe that there are many dark photos which not clearly depict the subject of interest.
During the night and under low light conditions the image capturing may lead to black
images or to images with very low brightness which do not present meaningful content.
The ForgetIT approach exploits the histogram information of the images in order to quan-
tify the amount of darkness. In particular, we examined the information derived from the
YCbCr and HSV color formats, employing the Y and the V channels which represent the
luminance and the color intensity of an image respectively. Each image is partitioned into
9 equal blocks according to the rule of thirds and the histogram of the luminance values
into the range of [0, 50], where the low luminance pixels are allocated, is estimated for
both the entire image and each of the 9 blocks. Furthermore, the mean pixel intensity of
the entire image and the middle image patch is estimated:

Vmean =
1

XY

X∑
x=1

Y∑
y=1

IV (x, y).

Finally, the aforementioned features are concatenated in a vector forming the input to an
SVM regression model which provides a confidence value indicating the probability that
an image is dark.

Noise: Images during their capture or during several compression processes are prone
to noise degradation. Noise can significantly degrade the perceived image quality as it ap-
pears in the form of speckled pixels of color on the image’s surface. In order to detect and
quantify the amount of image noise we use the Blind Image Quality Index’s (BIQI) tech-
nique [35] whose code is publicly available. This method employs NSS in the frequency
domain and applies a supervised learning approach in order to quantify the image qual-
ity. Specifically, first a wavelet transformation is performed on the examined images over
three scales and three orientations. Subsequently, based on NSS, the extracted informa-
tion is modelled using a Generalized Gaussian Distribution (GGD). The GGD parameters,
which are estimated for each of the three scales and three orientations, form the input of
an SVM regression model which produces a confidence value for the image quality. BIQI
provides a specific model for noise quantification which is finally used in the ForgetIT IQA
approach.

Fusion: After the calculation of each individual image quality measure, a final quality
score is computed using the Minkowski sum over the 4 quality measures. The fusion of
blur, contrast, darkness and noise quality measures is performed by the following equa-
tion:

ImageQualityScore = (
4∑

i=1

b(i) ∗ ImageQualityMeasure(i)p)
1
p

The parameters b and p were chosen carefully in order to optimize the measure’s per-

Page 32 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

formance in terms of correlation with human Mean Opinion Score (MOS). The output of
the implemented visual quality assessment component consists of the four separate confi-
dence scores indicating the probability that each image distortion is present and the result
of their fusion. The quality scores typically have a value between 0 and 1 (0 represents
the best quality, 1 the worst).

6.3 Experimental evaluation and comparison

For the training and the evaluation of the aforementioned quality measures, we created
a large image dataset consisting of more than 3000 digital photographs. Specifically for
the image blur assessment we created a training set consisting of 1000 images (blurred
and undistorted) and two evaluation sets. The “Natural blur” testset consists of 1000
natural images captured by various camera models and the “Artificial blur” testset consists
of 480 images which are artificially distorted. In Table 8, we present the experimental
results of the blur detection approach, as the blur is the most common image quality
distortion type, and we compare its results with the blur assessment techniques BIQI
and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [36]. Blur detection
approach, as shown by the experimental results, presents noticeable performance for
both artificially and naturally-blurred images.

Table 8: Experimental results of the blur detection method

“Natural blur” testset “Artificial blur” testset
ForgetIT approach BIQI BRISQUE ForgetIT approach BIQI BRISQUE

Accuracy 0.8720 0.7470 0.6290 0.9917 0.9417 0.9729
Precision 0.8394 0.6763 0.5333 1 0.9797 0.9760

Recall 0.8394 0.7372 0.7786 0.9911 0.9644 0.9956
F-score 0.8394 0.7055 0.63330 0.9955 0.9720 0.9857

6.4 Software implementation

We developed a Web Service on a server located in CERTH which executes the image
quality assessment method. The user can give a URL address of a compressed file
containing an image collection. This compressed file is downloaded locally to our server
where the images are processed. Similarly to our concept detection component (Section
5.4) there are no limitations in terms of image size and image format, and media items of
non-image types (e.g., text files, XML files, etc) are ignored. The output of our Service is
an XML file. A summary of the technical details of the IQA web service is shown in Table
9.

The URL query which call the service is:

http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/
ImageConceptDetection?pathType=""&pathName=""

Page 33 (of 51) www.forgetit-project.eu

http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/ImageConceptDetection?pathType=" "&pathName=" "
http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/ImageConceptDetection?pathType=" "&pathName=" "

ForgetIT Deliverable D4.2

Table 9: Summary of the technical details of the implemented service

Functional description Image quality assessment of image collections
Input An image collection contained into a compressed folder
Output A text and XML file containing the quality DoC
Language/technologies JAVA Web Service
Hardware Requirements N/A
OS Requirements Windows

where, pathType is the type of the path through which the image collection will be pro-
vided, (currentrly only the typeUrl type is available) and pathName is the path of the
image collection location.

An example of the URL query is: http://multimedia.iti.gr:8080/
ForgetITImageQualityAssessmentService/ImageConceptDetection?
pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_

Figure 11: Input image and part of the XML output file

Page 34 (of 51) www.forgetit-project.eu

http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Quality_Assessment_Service/test.zip
http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Quality_Assessment_Service/test.zip
http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Quality_Assessment_Service/test.zip
http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Quality_Assessment_Service/test.zip

ForgetIT Deliverable D4.2

BIN/ForgetIT_Quality_Assessment_Service/test.zip

where an image collection called “test.zip” is given as input to our image quality assess-
ment Web Service. Running this example, the results of the IQA process will be returned
to the browser in the form of an XML file. A representative example of an input image and
part of the XML result is given in Figure 11.

6.5 Conclusions and future work

ForgetIT IQA method focuses entirely on an images. In future work we are aiming to
extend it in order to be able to evaluate video quality as well. Moreover, the existing
measures could be further improved in terms of prediction accuracy, and our goal is to
incorporate them into a method which will eventually also assess the image aesthetics.

Page 35 (of 51) www.forgetit-project.eu

http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Quality_Assessment_Service/test.zip
http://multimedia.iti.gr:8080/ForgetITImageQualityAssessmentService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Quality_Assessment_Service/test.zip

ForgetIT Deliverable D4.2

7 Face detection for clustering

7.1 Problem statement

Face detection is the process which takes as an input an image and returns the location
of the face/s which is/are contained in it. Usually, the location is provided in the form
of coordinates of the face bounding box. At first glance, the only information that face
detection can provide is the number of faces and their relative proximity to the camera
(obtained from the bounding box sizes and assuming that the actual face sizes are more
or less equal). However, by employing further image analysis algorithms, we can calculate
the similarity or distance between facial regions and then cluster them according to this
measure. The output of the aforementioned procedure is the identification of the existence
of the same person in several images. By counting the number of appearances of the
detected faces (number of elements of each cluster) we can locate the dominant faces
which are of higher importance in our image dataset. In order to increase the accuracy
of the clustering method we have to provide as much accurate as possible input faces
extracted from the face detector. Thus, initially we focus our effort on creating an efficient
and accurate face detector.

7.2 ForgetIT approach

As presented in Section 5.2 of deliverable D4.1 [1] Viola and Jones detection [37] ap-
proach and its extensions are among the most successful methods presented in the
literature. They can be used to detect not only faces, but also other objects (following
appropriate training). As a result, other facial features such as nose, mouth and eyes can
be detected as well using the same algorithmic approach. Furthermore, more than one
face detectors can be employed in order to increase the number of successfully detected
faces.

Our approach studies the use of more than one face detectors as well as the verification
of the detected faces through facial characteristics detection.

Decreasing face detector errors

The errors that can arise from face detection techniques are false alarm and false rejection
errors. The former refers to an erroneous identification of a region which does not contain
any face, as a facial region. The latter refers to the failure to find existing facial regions.

Since the output of face detection will be used in face clustering, it is very important to
decrease as much as possible the face detection errors. It is obvious that if the quality
of the face detector is poor, then face clustering will not be able to provide high quality
results.

Page 36 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

In order to decrease the missed detection error, we used a number of face detectors to
capture as many faces as possible. We examined the face detectors separately and we
have also employed their union in order to increase the number of detected faces.

Detecting facial characteristics By adopting the union of face detectors we manage to
decrease the missed detection error. However, the false alarm is increased significantly
since the detected faces set includes a very high number of regions that do not contain
faces. In order to cope with this issue, we consider the detected faces as potential facial
regions and, in every region, we try to detect other facial characteristics. If other facial
characteristics are detected then the detected region is classified as face. The facial
characteristics which we search for in the potential facial regions are eyes, nose and
mouth. In our experiments we have tested the 9 following rules according to which we
accept or reject a potential facial region as a face.

The detected region is accepted as facial:

1. always (regardless the existence or not of other facial features)
2. if eyes are detected
3. if mouth is detected
4. if nose is detected
5. if eyes and mouth are detected
6. if eyes and nose are detected
7. if mouth and nose are detected
8. if eyes and mouth and nose are detected
9. if eyes or (mouth and nose) are detected

Facial characteristics detection fine tuning In many cases there are false detections
of facial characteristics in no facial areas. In order to eliminate these false detections we
check if their spatial location is in agreement with the physical location of them in a face.
For example, all the features should be horizontally centered in the facial region, eyes can
not be located too low, mouth can not be located too high etc. Thus, as a first step we
reject the facial characteristics that do not comply with the physical location. Then, we
accept or reject the facial area based on the type of the accepted facial characteristics
(eyes, mouth or nose) and the selected acceptance rule (one of the 9 rules listed above).

7.3 Experimental evaluation and comparison

Database

We have tested our method in Gallagher Collection Person Dataset [38]. It is a set of
589 images which are typical digital image snapshots, captured in real life, at real events,

Page 37 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

of real people, with real expressions. In the provided ground truth file, 931 faces with
32 identities have been labeled using as a labeling criterion the fact that the eyes must
be visible, and the face must be ”mostly” frontal (i.e. both ears should be visible, except
for occlusion). Labelling is given in the form of a text file that contains the coordinates
of the eye pairs locations of each image and the index of each of the 32 identities. It
contains 931 rows, one per detected face and each of them has the form {ImageName,
LeftEyeXCoord, LeftEyeYCoord, RightEyeXCoord, RightEyeYCoord, IdentityIndex}.

Experimental results

We run experiments with 6 face detectors and the 9 rules discussed in Section 7.2. For
each detector and for each detected facial region we applied the facial characteristics
detectors. After rejecting those facial characteristics for which their spatial location is
not in agreement with the physical location in the face, the detected faces are accepted
according to the valid facial characteristics and acceptance rule. For example, a facial
region that contains only eyes, would be accepted in the cases that the acceptance rules
are the 1st, 2nd, 5th, 6th, 8th of 9th and rejected otherwise.

For face detection we have used the detectors proposed in [39] and [40], while for eyes
the nose and the mouth the method introduced in [41]. The notations used in the table
correspond to the classifiers as follows: hfa2: haarcascade frontalface alt2, hfa: haar-
cascade frontalface alt, hfat: haarcascade frontalface alt tree, hfd: haarcascade frontal-
face default and FF LB: FrontalFaceLBP. A ”merged” detector has been also employed
which is actually the union of the detections of the aforementioned detectors.

For each pair of face detector-acceptance rule, we have calculated the precision and the
recall. Recall R indicates the percentage of faces that have been detected while precision
P the percentage of detected objects that are faces. Obviously, the higher the recall and
the precision are the more reliable and accurate the face detection method is. If we target
to increase recall, then the number of the real faces that are detected is increased but, on
the other hand, there is also an increased number of false detections. If we aim to obtain
high precision values, then less real faces are detected but the number of false detection
is decreased as well. Since our objective is to use the face detection output as an input
of face clustering our goal is to include as less as possible false detections namely to
increase the precision. Attempting to combine the two measures, precision and recall
into a single metric, we calculated the F-measure using the

F =
2R · P
R + P

.

In table 10 the F-measure values for all combinations of detectors/rules are presented.

F-measure has high values (above 80%) for rules 1,2,4 and 9. However, in some of these
cases the corresponding precision value is too low. Thus, due to the high significance
of precision values, in Table 10 we marked (used underlined figures) the F-measure val-
ues for which the corresponding precision value is above 94%. From these results we
observed that the face detector is more reliable (in terms of F-measure) for rules 2,4 and

Page 38 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Table 10: F-measure values for all combinations of detectors/merging rules

F measure (%)
rule

Detector 1 2 3 4 5 6 7 8 9

hfa2 87.69 83.54 67.37 87.30 58.34 79.42 61.78 53.24 88.50
FF LBP 81.52 82.31 64.94 85.22 56.87 78.12 60.11 51.93 87.07

hfa 88.96 82.65 66.76 87.05 58.23 79.41 62.67 55.10 87.23
hfat 85.32 78.26 63.45 81.36 55.82 73.67 57.97 51.40 82.51
hfd 68.91 82.59 65.77 82.81 58.72 76.79 60.96 53.19 86.91

merged 64.31 81.54 68.06 82.90 62.10 76.00 65.50 57.66 86.38

9. The results above also show that for rule 9 the highest values of recall are achieved
(above 80%). From the results above we selected the combination hfa-rule 9.

7.4 Software implementation

We developed a Matlab ® [42] function which performs image face detection. For each
image it can detect faces using more than one classifiers and give as an output the face
bounding boxes. Also, it calculates the ”merged” detector which takes into account all the
tested classifiers’ output. Then, for each detected face, facial characteristics (mouth, eyes
and nose) are detected using the user selected classifiers and the results that do not com-
ply with their physical location are eliminated. Finally, each face is accepted or rejected by
applying one of the nine rules listed in Section 7.2. The results are saved in a variable and
in a text file. The prototype component described in this section can be downloaded from
http://www.forgetit-project.eu/en/downloads/workpackage-4/. Please
contact the project for access to this protected section of the website.

The face detection ForgetIT function is called as follows:

output=face detection ForgetIT(directory path,facemodels,facial elem -

models, rule ,filename);

where

• directory path is the path that the images are contained,

• facemodels is a n × 2 cell array. Its first column contains the face detector model
names (matlab model strings or xml file names), while the second one user defined
names (e.g. face detector 1 etc)

• facial elem models is a 1 × 3 cell array containing the facial elements detector
where the first elements corresponds to the eye, the second to the nose and the
third to the mouth detector

Page 39 (of 51) www.forgetit-project.eu

http://www.forgetit-project.eu/en/downloads/workpackage-4/

ForgetIT Deliverable D4.2

• rule takes a value from 1 to 9 according to the acceptance rule

• filename is the name of the file that the result will be stored

• output is a struct that contains all the results

Figure 12: Face detection

Execution example:

output=face_detection_ForgetIT(impath,...
{{'FrontalFaceCART','FrontalFaceCART'},
{'FrontalFaceLBP','FrontalFaceLBP'}},...
{'EyePairBig','Nose','Mouth'},1,'results.txt');

In this example, the images are located in a directory given by the parameter impath
while the user has selected 2 face classifiers FrontalFaceCART and FrontalFaceLBP
(using them also as user defined names) and for eyes, nose and mouth the EyePairBig,
Nose,Mouth respectively. Note that instead of Matlab classification models either for
face or for facial elements, the user can employ XML files containing custom classifica-
tion models. The available Matlab classification models are listed in the help section of
the face detection ForgetIT function while a list of available XML models are also
included in the software package. Finally, the next argument (1) defines the acceptance
rule (values 1-9 - see rules list in page 37) and the final argument the name of the output
file. The output file has the following form:
1 1 1 457 322 693 693

1 2 1 459 312 694 694

1 3 1 457 312 696 703

2 1 2 1000 270 256 256 883 1109 283 283

2 2 3 1547 182 202 202 1008 277 251 251 889 1112 280 280

2 3 3 1000 270 259 258 883 1109 286 283 1547 182 202 202

3 1 1 445 666 140 140

3 2 4 1063 1042 50 50 463 1417 55 55 717 1010 77 77 1003 1543 110 110

3 3 5 445 666 140 140 1063 1042 50 50 463 1417 55 55 717 1010 77 77 1003 1543 110 110

...

Page 40 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

where, the first column is the image index, the second the face detection classifier index,
the third the number of detected faces and then, quartets of coordinates follow for each
detected face. Each quartet defines the extracted bounding box where the first pair of
numbers are the x, y coordinates of the top left bounding box corner while the second
pair is the width and height of the bounding box. It should be noted that the number of
classifiers is always one more than the user’s input since the ’merged’ classifier is also
added. A summary of the technical details of the software is shown in Table 11. Also, a
face detection output is illustrated in Figure 12.

Table 11: Summary of the technical details of the software

Functional description Face detection of Image collection
Input A directory that contains image files
Output A txt file with face detections
Language/technologies MATLAB R13a, Computer Vision Toolbox
Hardware Requirements N/A
OS Requirements Windows

7.5 Conclusions and future work

In the second year of the project we aim to increase the face detector accuracy and test
it in more databases as well as to create a clustering method being able to group each
person’s faces within an image collection.

Page 41 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

8 Image clustering for summarization

8.1 Problem statement

Clustering partitions a collection of images into groups called clusters, such that similar
images are assigned into the same group. As a result, large datasets can be handled in
such a way that images can be organized, and subsequently summarized by selecting
images that belong to different clusters for constructing a summary.

8.2 ForgetIT approach

We developed a component which takes as input an image collection, applies a clustering
algorithm and extracts the output, which is a set of clusters. In Figure 13 the image clus-
tering component consisting of the input, the output and two intermediate processes, is
shown. The first process is actually a pre-processing step which extracts a vector repre-
sentation for each image of the image collection that is to be clustered. This step can be
considered as the input of the component instead of an intermediate process depending
on the type of the vector representation that will be used, namely, as we will discuss in
the following of the section, model vectors extracted by concept detection method may
be used by the clustering method. In that case, this step is actually the output of another
component developed for the ForgetIT project and not a process inside the current com-
ponent. The second process is the clustering algorithm, which constructs the N clusters
and assigns each image to the cluster that is visually, or conceptually closest. Finally the
output is the N clusters and the images assigned in each of them. In addition, the most
representative image of each cluster (the one that is closest to the cluster center) is also
extracted. Below we will discuss the clustering algorithms and the input data types that
we have studied and evaluated.

Figure 13: Image clustering component

As far the clustering algorithms are concerned, many approaches have been introduced
in the literature, see deliverable D4.1 [1] for more details. In our experiments so far we

Page 42 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

studied and evaluated 6 of them as follows:

• kmeans [43]

• Hierarchical clustering using complete linkage (hier-comp) [44]

• Hierarchical clustering using single linkage (hier-single) [45]

• Partitioning Around Medoids (PAM) [46]

• Affinity Propagation (AP) [47]

• Farthest First Traversal Algorithm as a 2-approximation for the k-center clustering
(farthest first) [48]

The most interesting part of our approach focuses on the type of input data that is passed
to the clustering process. The first type of input data that we studied was the commonly
used HSV Histogram of 144 elements. Subsequently more complex data types, namely
the BoW vectors and the model vectors (i.e., the outcome of visual concept detection)
were evaluated. The former were extracted using dense sampling strategy for interest
point detection, SIFT descriptor for feature vector extraction and soft assignment as BoW
strategy. The final BoWs vector representation is a 4000-element vector per image/video
keyframe. In the case of model vectors, their extraction follows the classification task
described in Section 5.2.2. As for the training phase, we trained our framework on the
TRECVID 2013 Semantic Indexing (SIN) ground-truth annotated development set. The
346 concepts that we used have been provided by TRECVID SIN task. Thus, each im-
age/video keyframe is represented by a 346 element vector of confidence scores.

A well-known limitation of most clustering algorithms is the definition of the number of
clusters that an image collection will be divided each time. In our first approach we are not
dealing with this limitation; the number of clusters in our experiments was user-defined.

8.3 Experimental evaluation and comparison

We applied the clustering methods in 4 image collections whose size varies between
107 and 254 images. Additional experiments have been performed on 5 collections of
video keyframes whose number of videos varies from 11 to 27. A shot segmentation
algorithm has been applied to each video resulting in video frames and then we selected
the most representatives from them as the keyframes. In the end, joining the 4 image and
5 video keyframes collections, we came up with totally 9 image collections. All images
were processed separately to extract the three input data types.

The evaluation of the clustering results is performed by calculating the Normalized Mutual
Information (NMI) value [49] between the automatic clustering and the manually created
cluster ground truth. The NMI value ranges from 0 to 1 and higher values are better.

Page 43 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

Two ground truth clustering have been created for each of the 9 collections, one for the
same number of clusters (equal to 10) for all collections, and one for a collection-specific,
user-defined number of clusters.

We evaluated all possible combinations of the 6 clustering algorithms and 3 input data
types mentioned above. From these results we concluded that the optimum combination
is the kmeans algorithm with model vectors, giving the best result in 4 out of 8 experiments
in image collections and 7 out of 10 experiments in video keyframe collections. Due to
lack of space, Table 12 presents the results of one representative experiment where the
number of clusters is set to 7 and the NMI is calculated for each input-clustering algorithm
combination. For almost all clustering algorithms, the use of model vectors results in
the best performance among the three input data types-features. Furthermore, among
the tested clustering algorithms, kmeans is one of the best for all input data features.
Combined with model vectors, kmeans achieves the highest NMI value in this experiment.

Table 12: Clustering results

algorithm Input data feature NMI
kmeans hsv 0,2653
kmeans BoW 0,2361
kmeans model vectors 0,5979

hier-comp hsv 0,1778
hier-comp BoW 0,1912
hier-comp model vectors 0,5148
hier-single hsv 0,1317
hier-single BoW 0,1885
hier-single model vectors 0,1073

PAM hsv 0,2957
PAM BoW 0,197
PAM model vectors 0,4959
AP hsv 0,2928
AP BoW 0,2403
AP model vectors 0,5499

farthest first hsv 0,1669
farthest first BoW 0,2164
farthest first model vectors 0,464

8.4 Software implementation

We developed a Web Service on a server located in CERTH which executes the image
clustering method. The user provides as input not the image collection itself but a text file
containing a model vector representation for each image. Thus, in order the user to exe-

Page 44 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

cute the image clustering method he/she first needs to call the ForgetIT concept detection
Service (see subsection 5.4 Software Implementation). By calling the concept detection
Web Service the URL address of the required text file is returned to the user’s browser.
Moreover, when the concept detection service is executed, the names of the processed
images are changed to suitable for the process names (1.jpg, 2.jpg, etc.). Therefore,
another text file path, containing the correspondence between the original names of the
images and the renamed images, is returned by the concept detection service. The user
should copy these two paths and add them to the image clustering URL query. The
kmeans clustering algorithm is then executed and the final result is retuned back to the
user’s browser in XML format. The output presents the N clusters (the number of clusters
is user defined) and the corresponding images within each cluster. Also, the dominant
image of each cluster is recorded in the XML. A summary of the technical details of the
image clustering web service is shown in Table 13.

Table 13: Summary of the technical details of the implemented service

Functional description Image clustering of images collections
Input Two text files - One containing a model vector representation

for each image of the collection and another for the names
of the images

Output A text and XML file containing the constructed clusters
Language/technologies JAVA Web Service
Hardware Requirements N/A

OS Requirements Windows

The URL query which call the service is: http://multimedia.iti.gr:
8080/ForgetITImageCClusteringService/ImageConceptDetection?
pathType=’’&pathName=’’&renamePath=’’&NumberOfCluster=’’

where, pathType is the type of the path that the input data will be provided, only the
typeUrl type is available now, pathName is the path of text file location containing the
model vectors (as already mentioned this path is provided by calling the concept detection
Web Service), renamePath is the path of the text file location containing the image name
correspondences and NumberOfCluster is an integer indicating the number of clusters
that the user want to construct from his/her collection.

An example of the URL query is: http://multimedia.iti.gr:
8080/ForgetITImageClusteringService/ImageConceptDetection?
pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/
CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/
VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http:
//multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_
Service/Images/user_817/VisitEdinburgh2013Sven_user_817_
RenameList.txt&NumberOfCluster=7

where an image collection, called “VisitEdinburgh2013Sven”, is passed as an input to
our concept detection approach. ‘VisitEdinburgh2013Sven user 817 finalDoC.txt” and

Page 45 (of 51) www.forgetit-project.eu

http://multimedia.iti.gr:8080/ForgetITImageCClusteringService/ ImageConceptDetection?pathType=''&pathName=''&renamePath=''&NumberOfCluster=''
http://multimedia.iti.gr:8080/ForgetITImageCClusteringService/ ImageConceptDetection?pathType=''&pathName=''&renamePath=''&NumberOfCluster=''
http://multimedia.iti.gr:8080/ForgetITImageCClusteringService/ ImageConceptDetection?pathType=''&pathName=''&renamePath=''&NumberOfCluster=''
http://multimedia.iti.gr:8080/ForgetITImageClusteringService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Images/user_817/VisitEdinburgh2013Sven_user_817_RenameList.txt&NumberOfCluster=7
http://multimedia.iti.gr:8080/ForgetITImageClusteringService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Images/user_817/VisitEdinburgh2013Sven_user_817_RenameList.txt&NumberOfCluster=7
http://multimedia.iti.gr:8080/ForgetITImageClusteringService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Images/user_817/VisitEdinburgh2013Sven_user_817_RenameList.txt&NumberOfCluster=7
http://multimedia.iti.gr:8080/ForgetITImageClusteringService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Images/user_817/VisitEdinburgh2013Sven_user_817_RenameList.txt&NumberOfCluster=7
http://multimedia.iti.gr:8080/ForgetITImageClusteringService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Images/user_817/VisitEdinburgh2013Sven_user_817_RenameList.txt&NumberOfCluster=7
http://multimedia.iti.gr:8080/ForgetITImageClusteringService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Images/user_817/VisitEdinburgh2013Sven_user_817_RenameList.txt&NumberOfCluster=7
http://multimedia.iti.gr:8080/ForgetITImageClusteringService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Images/user_817/VisitEdinburgh2013Sven_user_817_RenameList.txt&NumberOfCluster=7
http://multimedia.iti.gr:8080/ForgetITImageClusteringService/ImageConceptDetection?pathType=typeUrl&pathName=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Results/Concepts/VisitEdinburgh2013Sven_user_817_finalDoC.txt&renamePath=http://multimedia.iti.gr:8080/CERTH_BIN/ForgetIT_Concept_Detection_Service/Images/user_817/VisitEdinburgh2013Sven_user_817_RenameList.txt&NumberOfCluster=7

ForgetIT Deliverable D4.2

“VisitEdinburgh2013Sven user 817 RenameList.txt”, both provided by the concept de-
tection service, contain the image model vectors and the correspondence of the original
and renamed image names respectively. Calling the service 7 clusters are constructed
and each image of the collection is assigned to one of the 7 clusters. In Figure 14, a
representative part of the XML output, which is returned at the user’s browser, is shown.

Figure 14: Part of the XML output file

8.5 Conclusions and future work

We studied image/video keyframe clustering based on different types of input data fea-
tures and clustering methods. While most of the existing methods in the literature use
visual features for image/video keyframe representation, we employed model vector rep-
resentations using concept detection confidence scores. Experiments showed that the
kmeans algorithm combined with model feature vectors gives the best result. An open
issue that has to be studied thoroughly is the selection of the appropriate number of clus-
ters which in our current work is provided manually. Additionally, the effect of the concept
set that is used to the clustering effectiveness is worth studying.

Page 46 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

9 Conclusions and future work

In this document the first release of the ForgetIT text and visual information analysis
techniques for condensation and summarization was presented, based on the theories
and state of the art described in the previous work D4.1 [1]. Several software components
performing textual and visual analysis were designed, implemented and evaluated.

In the second year of the project, the aforementioned methods will be extended taking
also into account the requirements that will be collected from WP2 (foundations of forget-
ting and remembering) as well as the application workpackages which have to do with
personal (WP9) and organizational (WP10) preservation. Furthermore, these and subse-
quent ForgetIT methods will continue to be evaluated, initially on ForgetIT datasets and
later on also by participation on international benchmark activities. Moreover, during the
second project year, the presented methods (implemented in the corresponding software
components) will be also tested within the Preserve-or-Forget platform, experimenting the
overall processing workflow and component communications (WP5 and WP8).

Page 47 (of 51) www.forgetit-project.eu

ForgetIT Deliverable D4.2

References

[1] ForgetIT. D4.1 - Information Analysis, Consolidation and Concentration
for Preservation - State of the Art and Approach. July 2013. http:
//www.forgetit-project.eu/fileadmin/fm-dam/deliverables/
ForgetIT_WP4_D4.1.pdf.

[2] ForgetIT. D9.1 - Application Use Cases Requirements Document. July 2013.
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/
ForgetIT_WP9_WP10_D9.1.pdf.

[3] ForgetIT. D8.1 - Integration Plan and Architectural Approach. October 2013.
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/
ForgetIT_WP8_D8.1.pdf.

[4] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj
Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Danica Daml-
janovic, Thomas Heitz, Mark A. Greenwood, Horacio Saggion, Johann Petrak, Yaoy-
ong Li, and Wim Peters. Text Processing with GATE (Version 6). 2011.

[5] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate Detec-
tion using Shallow Text Features. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining, 2010.

[6] BoilerPipe plugin. [Online; accessed 27-January-2014]. http://gate.ac.uk/
userguide/sec:misc-creole:boilerpipe.

[7] Stefan Dietze, Diana Maynard, Nina Tahmasebi, Yannis Stavrakas, Vassilis Pla-
chouras, Elena Demidova, Jonathon Hare, David Dupplaw, Adam Funk, Wim Peters,
and Patrick Siehndel. Extraction and Enrichment. Deliverable D3.2, ARCOMEM,
2012.

[8] Termraider tools. [Online; accessed 27-January-2014]. http://gate.ac.uk/
userguide/sec:creole:termraider.

[9] Tag Cloud - Wikipedia. [Online; accessed 27-January-2014]. http://en.
wikipedia.org/wiki/Tag_cloud.

[10] GATE last build. [Online; accessed 27-January-2014]. http://jenkins.gate.
ac.uk/job/GATE-Nightly/lastSuccessfulBuild/.

[11] Christiane Fellbaum, editor. WordNet - An Electronic Lexical Database. MIT Press,
1998.

[12] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.
International Journal on Semantic Web and Information Systems (IJSWIS), 5(3):1–
22, 2009.

Page 48 (of 51) www.forgetit-project.eu

http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP4_D4.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP4_D4.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP4_D4.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP9_WP10_D9.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP9_WP10_D9.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP8_D8.1.pdf
http://www.forgetit-project.eu/fileadmin/fm-dam/deliverables/ForgetIT_WP8_D8.1.pdf
http://gate.ac.uk/userguide/sec:misc-creole:boilerpipe
http://gate.ac.uk/userguide/sec:misc-creole:boilerpipe
http://gate.ac.uk/userguide/sec:creole:termraider
http://gate.ac.uk/userguide/sec:creole:termraider
http://en.wikipedia.org/wiki/Tag_cloud
http://en.wikipedia.org/wiki/Tag_cloud
http://jenkins.gate.ac.uk/job/GATE-Nightly/lastSuccessfulBuild/
http://jenkins.gate.ac.uk/job/GATE-Nightly/lastSuccessfulBuild/

ForgetIT Deliverable D4.2

[13] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic web,
pages 722–735. Springer, 2007.

[14] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, pages 1247–1250. ACM, 2008.

[15] CKEditor Website. [Online; accessed 27-January-2014]. http://http://
ckeditor.com/.

[16] Stanford CoreNLP. [Online; accessed 27-January-2014]. http://nlp.
stanford.edu/software/corenlp.shtml.

[17] Apache OpenNLP. [Online; accessed 27-January-2014]. http://opennlp.
apache.org.

[18] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open
information extraction. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’11, pages 1535–1545, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

[19] Raman Maini and Himanshu Aggarwal. Study and comparison of various image
edge detection techniques. International Journal of Image Processing (IJIP), 3(1):1–
11, 2009.

[20] Frederic Jurie and Bill Triggs. Creating efficient codebooks for visual recognition. In
Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol-
ume 1, pages 604–610. IEEE, 2005.

[21] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[22] Koen EA Van De Sande, Theo Gevers, and Cees GM Snoek. Evaluating color de-
scriptors for object and scene recognition. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(9):1582–1596, 2010.

[23] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust fea-
tures. In Computer Vision–ECCV 2006, pages 404–417. Springer, 2006.

[24] Engin Tola, Vincent Lepetit, and Pascal Fua. DAISY: An efficient dense descriptor
applied to wide-baseline stereo. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(5):815–830, 2010.

[25] Jan C van Gemert, Cor J Veenman, Arnold WM Smeulders, and J-M Geusebroek.
Visual word ambiguity. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 32(7):1271–1283, 2010.

Page 49 (of 51) www.forgetit-project.eu

http://http://ckeditor.com/
http://http://ckeditor.com/
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://opennlp.apache.org
http://opennlp.apache.org

ForgetIT Deliverable D4.2

[26] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local
descriptors into a compact image representation. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 3304–3311. IEEE, 2010.

[27] Gabriela Csurka and Florent Perronnin. Fisher vectors: Beyond bag-of-visual-words
image representations. In Computer Vision, Imaging and Computer Graphics. The-
ory and Applications, pages 28–42. Springer, 2011.

[28] Vladimir N Vapnik. Statistical learning theory. 1998.

[29] OpenCV. [Online; accessed 27-January-2014]. http://opencv.org.

[30] G. Bradski. Dr. Dobb’s Journal of Software Tools.

[31] Paul Over, George Awad, Martial Michel, Jon Fiscus, Barbara Shaw, Wessel Kraaij,
Alan F Smeaton, and Georges Quénot. TRECVID 2012 - An overview of the goals,
tasks, data, evaluation mechanisms and metrics. In TRECVID 2012, 2012.

[32] CUDA. [Online; accessed 27-January-2014]. http://www.nvidia.com/
object/cuda_home_new.html.

[33] Emine Yilmaz, Evangelos Kanoulas, and Javed A Aslam. A simple and efficient
sampling method for estimating AP and NDCG. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 603–610. ACM, 2008.

[34] Eli Peli. Contrast in complex images. JOSA A, 7(10):2032–2040, 1990.

[35] Anush Krishna Moorthy and Alan Conrad Bovik. A two-step framework for construct-
ing blind image quality indices. Signal Processing Letters, IEEE, 17(5):513–516,
2010.

[36] A. Mittal, A.K. Moorthy, and A.C. Bovik. No-reference image quality assessment in
the spatial domain. Transactions on Image Processing, IEEE, 21:4695–4708, 2012.

[37] Paul Viola and Michael J. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, 2004.

[38] A.C. Gallagher and Tsuhan Chen. Clothing cosegmentation for recognizing people.
In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1–8, 2008.

[39] Rainer Lienhart, Alexander Kuranov, and Vadim Pisarevsky. Empirical analysis of de-
tection cascades of boosted classifiers for rapid object detection. In Bernd Michaelis
and Gerald Krell, editors, Pattern Recognition, volume 2781 of Lecture Notes in
Computer Science, pages 297–304. Springer Berlin Heidelberg, 2003.

[40] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation in-
variant texture classification with local binary patterns. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(7):971–987, 2002.

Page 50 (of 51) www.forgetit-project.eu

http://opencv.org
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

ForgetIT Deliverable D4.2

[41] M. Castrillon, O. Deniz, C. Guerra, and M. Hernandez. Encara2: Real-time detection
of multiple faces at different resolutions in video streams. Journal of Visual Commu-
nication and Image Representation, 18(2):130 – 140, 2007.

[42] MATLAB. version 8.1 (R2013a). The MathWorks Inc., Natick, Massachusetts, 2013.

[43] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[44] Daniel Defays. An efficient algorithm for a complete link method. The Computer
Journal, 20(4):364–366, 1977.

[45] Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster
method. The Computer Journal, 16(1):30–34, 1973.

[46] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction
to cluster analysis, volume 344. Wiley. com, 2009.

[47] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data
points. science, 315(5814):972–976, 2007.

[48] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science, 38:293–306, 1985.

[49] Alexander Strehl and Joydeep Ghosh. Cluster ensembles - a knowledge reuse
framework for combining multiple partitions. The Journal of Machine Learning Re-
search, 3:583–617, 2003.

[50] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel
for large-scale image classification. In Computer Vision–ECCV 2010, pages 143–
156. Springer, 2010.

Page 51 (of 51) www.forgetit-project.eu

	List of Authors
	Contents
	Executive Summary
	Glossary
	Introduction
	Text Summarization
	Problem statement
	ForgetIT approach
	Software implementation
	Conclusions and future work

	Text Condensation
	Problem statement
	ForgetIT approach
	Software implementation
	Conclusions and future work

	Semantic Text Composition
	Problem statement
	ForgetIT approach
	Experimental evaluation
	Software implementation
	Editor component
	NLP component
	LOD component
	PIMO component

	Conclusions and future work

	Feature extraction and concept detection in image collections
	Problem statement
	ForgetIT approach
	Feature extraction
	Concept detection

	Experimental evaluation and comparison
	Software implementation
	Conclusions and future work

	Image quality assessment
	Problem statement
	ForgetIT approach
	Experimental evaluation and comparison
	Software implementation
	Conclusions and future work

	Face detection for clustering
	Problem statement
	ForgetIT approach
	Experimental evaluation and comparison
	Software implementation
	Conclusions and future work

	Image clustering for summarization
	Problem statement
	ForgetIT approach
	Experimental evaluation and comparison
	Software implementation
	Conclusions and future work

	Conclusions and future work
	References

